Design artificial intelligence tools for tracking Fission Product release out of nuclear fuel

The Laboratory for the Analysis of Radionuclide Migration (LAMIR), part of the Institute for Research on Nuclear Systems (IRESNE) at CEA Cadarache, has developed a set of advanced measurement methods to characterize the release of fission products from nuclear fuel during thermal transients. Among these innovative tools is an operando in situ imaging system that enables real-time observation of these phenomena. The large amount of data generated by these experiments requires dedicated digital processing techniques that account for both the specificities of nuclear instrumentation and the underlying physical mechanisms.

The goal of this PhD project is to develop an optimized data processing approach based on state-of-the-art Artificial Intelligence (AI) methods.
In the first phase, the focus will be on processing thermal sequence images to detect and analyze material movements, aiming to identify an optimal image-processing strategy defined by rigorous quantitative criteria.
In the second phase, the methodology will be extended to all experimental data collected during a thermal sequence. The long-term objective is to create a real-time diagnostic tool capable of supporting experiment monitoring and interpretation.

This PhD will be carried out within a collaborative framework between LAMIR, which has recognized expertise in nuclear fuel behavior analysis and imaging, and the Institut Fresnel in Marseille, known for its strong background in image analysis and artificial intelligence.
The candidate will benefit from a multidisciplinary and stimulating research environment, with opportunities to present and publish their work at national and international conferences and in peer-reviewed journals.

Development of manganese-doped uranium oxide fuel: sintering mechanisms and microstructural changes

This PhD project focuses on developing nuclear fuels with improved properties through the addition of a dopant, for use in pressurized water reactors.
In nuclear reactors, the fuel consists of uranium dioxide (UO2) pellets stacked inside zirconium alloy cladding. These pellets, in contact with the cladding, must withstand extreme conditions of temperature and pressure. One of the challenges is to limit chemical interactions that may occur during the migration of fission products from the center to the periphery of the pellet and with the cladding. A notable example of such a phenomenon is the stress corrosion assisted by iodine, which can occur during accidental transients.
One strategy is to dope the UO2 ceramic with a metal oxide in order to control the material’s microstructure and also to modify its thermochemical behavior, thereby limiting both the mobility and corrosive nature of fission gases. Among the possible dopants, manganese oxide (MnO) represents a promising option and a potential alternative to chromium oxide (Cr2O3), which is currently a mature solution for the industry.
This PhD will explore the role of manganese in the sintering of UO2, particularly the microstructure and final properties of the fuel. The work will take place at the CEA Cadarache center, within the Institute for research on nuclear systems for low-carbon energy production (IRESNE).
During these three years, you will be hosted in the Laboratory for the study of uranium-based fuels (LCU) within the fuel study department (DEC), in close connection with the Laboratory for fuel behavior modeling (LM2C).
This research, combining experimentation and modeling, will be structured around three main topics:
• Study of the influence of manufacturing conditions on the microstructure of Mn-doped UO2,
• Investigation of the impact of doping on defect formation in UO2 and the associated properties,
• the contribution to the thermodynamic modelling of the system, based on experimental tests.
During this PhD, you will gain solid experience in the fabrication and advanced characterization of innovative materials, particularly in the field of ceramics for the nuclear industry. Your work could lead to publications, patents, and participation in national and international conferences.
You will also acquire numerous technical skills applicable across various research and industrial fields, including energy, microelectronics, chemical and pharmaceutical industries.

Atomistic investigation of the thermophysical properties of metallic nuclear fuel UMo

Uranium – molybdenum alloys UMo present excellent thermal properties and a good uranium density. For those reasons, they are considered as nuclear fuel candidates for research reactors. It is therefore crucial for the CEA to deploy new computational methodologies in order to investigate the evolution of their thermo-physical properties under irradiation conditions.

This project is centered on the application of atomistic methods in order to investigate the stability and diffusion of intra-granular xenon clusters within the metallic nuclear fuel UMo.
The first step of your work will involve continuing the development of atomic-scale computational models for UMo, as initiated within the host laboratory. These models use machine learning methods to develop interatomic potentials and will be validated by comparison with existing experimental data for this material. They will then be used to assess the temperature-dependent evolution and the impact of defect accumulation (both point and extended defects) on several thermophysical properties critical to fuel modeling, such as elastic properties, density, thermal expansion, as well as thermal properties like specific heat and thermal conductivity. In collaboration with other researchers in the department, you will format these results for integration into the Scientific Computing Tools used to simulate the behavior of nuclear fuels.

In a second phase, you will be responsible for extending the validity of your models to account for the formation of fission gases such as xenon within UMo single crystals. This will enable you to simulate the stability of xenon clusters in UMo crystals. These calculations, performed using classical molecular dynamics methods, will be systematically compared with experimental observations obtained via transmission electron microscopy.

The results obtained during the various stages of this project will be completely innovative and will be the subject of scientific publications as well as presentations at international scientific conferences. Besides, this work will enable you to complement your training by acquiring skills applicable to many areas of materials science, including ab initio calculations, machine learning-based interatomic potential fitting, classical molecular dynamics, use of CEA supercomputers, and key concepts in statistical physics and condensed matter physics—fields in which the supervising team members are recognized experts.

You will join the Fuel Behavior Modeling Laboratory at the Research Institute for Nuclear Systems for Low-Carbon Energy Production (IRESNE, CEA Cadarache), a dynamic research team where you will have regular opportunities to interact with fellow PhD students and researchers. This environment also provides extensive opportunities for national and international collaboration, including with:
• Developers and users of the MAIA fuel performance code (dedicated to research reactor fuel studies),
• Experimental researchers from the Nuclear Fuel Studies Department,
• Teams from other CEA centers (Saclay, CEA/DAM),
• International partners.
This rich and multidisciplinary context will enable you to fully engage with the scientific community focused on nuclear materials science.

[1] Dubois, E. T., Tranchida, J., Bouchet, J., & Maillet, J. B. (2024). Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials. Physical Review Materials, 8(2), 025402.
[2] Chaney, D., Castellano, A., Bosak, A., Bouchet, J., Bottin, F., Dorado, B., ... & Lander, G. H. (2021). Tuneable correlated disorder in alloys. Physical Review Materials, 5(3), 035004.

Nucleate boiling within porous deposits: study of the coupling between coolant composition and capillary vaporization

In the search of the optimal combination of low-carbon energy sources to address the challenge of climate change, nuclear energy plays a crucial role alongside intermittent renewable energies. In this context, the performance and safety of Pressurized Water Reactors (PWRs), which make up the French nuclear fleet, remain an active and high-value research area.
In these reactors, a subcooled nucleate boiling regime can occur, particularly when the local temperature of the coolant exceeds its saturation temperature. This wall boiling promotes the formation of porous deposits of metallic oxides. Within the porosities of these deposits, gas nuclei can be trapped and lead to the onset of nucleate boiling on these surfaces. The vapor formed through a wick boiling or capillary vaporization mechanism then escapes through the chimneys of the deposit. The chemistry of the coolant affects not only the thermodynamic properties of the fluid (such as saturation temperature and latent heat) but, more importantly, its interfacial properties (surface tension and solid/liquid/gas contact angles). These interfacial properties directly control the capillary forces within the deposits, and thus the onset and dynamics of subcooled boiling. As of today, the influence of coolant chemistry on the initiation and development of subcooled nucleate boiling within porous heated surfaces remains poorly understood.
The objective of this PhD is therefore to systematically study the coupled influence of coolant composition and capillary vaporization on nucleate boiling within porous substrates heated by conduction.
The research will follow an experimental approach to investigate how coolant chemistry affects surface tension and contact angles, in order to characterize fluid wetting on idealized porous substrates. Subcooled convective boiling experiments will also be conducted, with the phenomena characterized by shadowgraphy and fiber-optic thermometry.
The PhD will take place within the Thermal Hydraulics of Core and Circuits Laboratory (LTHC) and the Contamination Control, Coolant Chemistry and Tritium Management Laboratory (LMCT) at CEA IRESNE (Cadarache, France). The work will be supervised by Prof. Benoît Stutz of the University of Savoie Mont Blanc. Throughout this project, the doctoral student will develop expertise in interfacial physico-chemistry and two-phase thermohydraulics through the observation, characterization, and modeling of complex multiphysics phenomena.

Modeling of Critical Heat Flux Using Lattice Boltzmann Methods: Application to the Experimental Devices of the RJH

LBM (Lattice Boltzmann Methods) are numerical techniques used to simulate transport phenomena in complex systems. They allow modeling fluid behavior in terms of particles moving on a discrete grid (a "lattice"). Unlike classical methods, which solve the differential equations of fluids directly, LBM simulate the evolution of the fluid particle distribution functions in a discrete space using propagation and collision rules.

The choice of lattice in LBM is a crucial step, as it directly affects the accuracy, efficiency, and stability of the simulations. The lattice determines how fluid particles interact and move through space, as well as how the discretization of space and time is performed.

LBM methods exhibit a natural parallelism because the computations at each grid point are relatively independent. Compared to classical CFD methods, LBM can better capture certain complex phenomena (such as multiphase, turbulent, or porous media flows) because they rely on a mesoscopic modeling of the fluid, directly derived from particle kinetics, rather than on a macroscopic resolution of the Navier–Stokes equations. This approach allows for a finer representation of interfaces, nonlinear effects, and local interactions, which are often difficult to model accurately using classical CFD methods. LBM therefore enables the capture of complex phenomena at a lower computational cost. Recent studies have notably shown that LBM can reproduce the Nukiyama boiling curve (pool boiling) and, consequently, accurately calculate the critical heat flux. This flux corresponds to a bulk boiling, known as a boiling crisis, which results in a sudden degradation of heat transfer.

The critical heat flux is a crucial issue for the experimental devices (DEX) of the Jules Horowitz Reactor, as they are cooled by water either via natural convection (fuel capsule-type devices) or forced convection (loop-type devices). Thus, to ensure the proper cooling of the DEX and reactor safety, it is essential to verify that the critical heat flux is not reached within the studied parameter range. It must therefore be determined with precision. Previous studies conducted on a fuel-capsule-type DEX using the NEPTUNE-CFD code (classical CFD methods) have shown that modeling is limited to regions far from the critical heat flux. In general, flows with high void fractions (greater than 10%) cannot be easily resolved using classical CFD approaches.

The student will first define a lattice to apply LBM to a RJH device under natural convection. They will consolidate the results obtained for the critical heat flux on this configuration by comparing them with available data. Finally, exploratory calculations under forced convection (laminar to turbulent regime) will be conducted.

The student will be hosted at the IRESNE institute.

Impact of the porosity on the MOX (U,Pu)O2 fuel

The nuclear fuel performances depend on their thermomecanical behaviors and, therefore, their thermal conductivity. This property varies significantly with high porsity levels especially in mixed oxided (composed of uranium and plutonium) used in fast ractors.

The aim of this thesis is to assess the impact of the pore qualities and shapes on the thermal conductivity on fissile materials and to propose a thermal conductivity law depending of the quantity, the length, the shape and the interconnectivity of its porosity. To reach this goal, recent measures on thermal properties are in progress by laser heating, allowing a better understanding of the fuel behavior in temperature ranges mostly unexplored like very high temperatures (until 2500°C), are in progress in the european research center (JRC) in Karlsruhe. These measures are performed on materials with different microstructures. These measures will be interpreted from thermograms and compared to simulation results (image analysis, converting 2D image in a 3D problem, TM-FFT)[1].
This thesis will take place in the French Institute for Research on Nuclear Systems for Low-Carbon Energy production (IRESNE) in the Expertise and Validation on multi-fuel Applications Laboratory (LEVA). LEVA is part of the Fuel Study and Simulation Department and its missions consist of :
- Answer to industrial demands by providing studies ;
- Validation of the Scientific Calculation Tools (OCS) of the PLEIADES plateform ;
- Enhance the fuel behavior understanding ;
- Manage the Fuel databases.
Finally, the collaboration with JRC Karlsuhe will be a chance to work within an international framework which also is a strenght of LEVA.

This work will be valorized through conferences participations and publications in peer-reviewed journals. Furthermore, the PhD student will have the possibility to acquire or strengthen some technical skills (experimental data interpretation, modelling) applicable in various fields of material science and engineering.

[1] This work forms a natural extension of the PHD thesis "The Thermal conductivity of mixed oxide fuel (MOX) : effect of temperature, elementary chemical composition, microstructure and burn-up in reactor" - TEL - Thèses en ligne.

Experimental study of the behavior of fission gases in Fast Neutron Reactor fuels irradiated at low power.

With the emergence of new start-ups in the nuclear field, it is essential to extend the validation basis for Fast Neutron Reactor (FNR) fuel performance codes to lower linear power operating regimes, an area that has yet to be fully explored.
Given the lower temperatures reached in the fuel, the microstructure induced by irradiation is completely different from what is typically observed at higher linear power (formation of a central hole, columnar grains, etc.). These lower operating temperatures also lead to a decrease in fission gas release (FGR), which can cause significant gas swelling of the fuel. At the same time, low operating temperatures can also lead to an increase in the density of defects (dislocations) induced during irradiation (lower defect annealing efficiency), resulting in an indirect increase in fuel swelling.
It is therefore important to determine the density of dislocations in the fuel, as their ambivalent role shows that they can slow down the release of gases by trapping them and promoting their storage in intragranular bubbles, while also facilitating their migration if they form a connected network.
In order to improve our understanding of the phenomena involved and the models of fuel swelling under irradiation, it is essential to have experimental results such as the densities and sizes of Fission Gas (FG) bubbles and the densities of dislocations in these operating regimes.
The Laboratory for Fuel Characterization and Property Studies (LCPC) within the Research Institute for Nuclear Systems for Low-Carbon Energy Production (IRESNE), to which the PhD student will be affiliated, is equipped with state-of-the-art instruments recently acquired (TEM, SEM-FIB, SIMS, EPMA, XRD) for the study of irradiated materials allowing him to develop advanced experimental skills within the specific context of a Basic Nuclear Installation. This work will be carried out in close collaboration with the teams responsible for developing the multiphysics scientific computing tools of the PLEIADES software platform. It is clear that the skills acquired during the thesis will be valuable in a future career in both academia and industry. The doctoral student will also be able to promote their work to the international academic community and the industrial world through oral presentations and peer-reviewed articles.

Radiological signatures in Antarctica: development and validation of analytical methodologies

Hosted by the IRESNE Institute at the CEA-Cadarache center, the PhD student will contribute to the analytical development of the Laboratoire d’Analyses Radiochimiques et Chimiques (LARC), which has provided expert analytical support for over 60 years in the fields of nuclear reactors, fuel cycle, waste management, and decommissioning. The main objective of the project is to develop and optimize analytical methods for detecting radiological markers through collaborations with internal (LANIE, LEXAN) and external (CSIC, CIEMAT) partners. The analyses will focus on 137Cs and 210Pb using gamma spectrometry, uranium and plutonium isotopes using MC-ICPMS, and overall alpha/beta activity using liquid scintillation. In a second phase, these methods will be applied to a variety of samples, including those collected in Antarctica as part of the GEOCHEM project [1], in order to investigate the spatial distribution and origin of these radiological markers [2].

By the end of this multidisciplinary PhD project, the student will have gained solid experience in measuring gamma, alpha, and beta radiation. Additionally, interpreting the analytical results in connection with environmental parameters will develop critical thinking skills and foster scientific curiosity.

[1] Maestro, A. et al. Fracturation pattern and morphostructure of the Deception Island volcano, South Shetland Islands, Antarctica. Antarct. Sci. 37, 176–200 (2025).

[2] Xu-Yang, Y. et al. Radioactive contamination transported to Western Europe with Saharan dust. Sci. Adv. 11, eadr9192 (2025).

Study and Modelling of Tritium Speciation from the Outgassing of Tritiated Waste

Tritium, the radioactive isotope of hydrogen, is used as fuel for nuclear fusion, particularly in the ITER research reactor currently under construction in Cadarache (France). Its small size allows it to easily diffuse into materials, which will lead to the production of waste containing tritium after the operational phase of ITER.
To optimize the management of this tritiated waste, the CEA is developing technological solutions aimed at extracting and recycling tritium, as well as limiting its migration to the environment. The effectiveness of these solutions largely depends on the chemical form in which tritium is released. Experience from the outgassing of tritium from various types of waste indicates that it is released in two main chemical forms: tritiated hydrogen (HT) and tritiated water vapor (HTO), in varying proportions.
However, the mechanisms determining the distribution of tritium between these two species are not well understood. Several factors, such as oxygen and water concentrations, the nature and surface state of the waste, and the concentration of tritium, can influence this speciation.
The objectives of this thesis are as follows:
- To identify the phenomena affecting the speciation of tritium during the outgassing of tritiated waste.
- To conduct an experimental study to verify the proposed hypotheses.
- To develop a numerical model to predict the proportions of HT and HTO released, in order to optimize the management of this waste.
The thesis will be conducted within the IRESNE Institute (Institute for Research on Nuclear Systems for Low Carbon Energy Production) at the CEA site in Cadarache, in a laboratory specialised in tritium studies. The PhD candidate will work in a stimulating scientific environment and will have the opportunity to showcase their research work. The candidate must hold an engineering degree or a master’s degree in Chemical Engineering, Process Engineering, or Chemistry.

Bottom-up synthesis of nanographene and study of their optical and electronic properties

This project is part of an ANR project, which aims to synthesize perfectly soluble and individualized graphene nanoparticles in solution and incorporate them into spin electronics devices. To do this, we will draw on the laboratory's experience in synthesizing and studying the optical properties of graphene nanoparticles to propose original structures to several groups of physicists who will be responsible for studying the optical and electronic properties and manufacturing spin valve-type devices.

Top