Radiological signatures in Antarctica: development and validation of analytical methodologies

Hosted by the IRESNE Institute at the CEA-Cadarache center, the PhD student will contribute to the analytical development of the Laboratoire d’Analyses Radiochimiques et Chimiques (LARC), which has provided expert analytical support for over 60 years in the fields of nuclear reactors, fuel cycle, waste management, and decommissioning. The main objective of the project is to develop and optimize analytical methods for detecting radiological markers through collaborations with internal (LANIE, LEXAN) and external (CSIC, CIEMAT) partners. The analyses will focus on 137Cs and 210Pb using gamma spectrometry, uranium and plutonium isotopes using MC-ICPMS, and overall alpha/beta activity using liquid scintillation. In a second phase, these methods will be applied to a variety of samples, including those collected in Antarctica as part of the GEOCHEM project [1], in order to investigate the spatial distribution and origin of these radiological markers [2].

By the end of this multidisciplinary PhD project, the student will have gained solid experience in measuring gamma, alpha, and beta radiation. Additionally, interpreting the analytical results in connection with environmental parameters will develop critical thinking skills and foster scientific curiosity.

[1] Maestro, A. et al. Fracturation pattern and morphostructure of the Deception Island volcano, South Shetland Islands, Antarctica. Antarct. Sci. 37, 176–200 (2025).

[2] Xu-Yang, Y. et al. Radioactive contamination transported to Western Europe with Saharan dust. Sci. Adv. 11, eadr9192 (2025).

Study and Modelling of Tritium Speciation from the Outgassing of Tritiated Waste

Tritium, the radioactive isotope of hydrogen, is used as fuel for nuclear fusion, particularly in the ITER research reactor currently under construction in Cadarache (France). Its small size allows it to easily diffuse into materials, which will lead to the production of waste containing tritium after the operational phase of ITER.
To optimize the management of this tritiated waste, the CEA is developing technological solutions aimed at extracting and recycling tritium, as well as limiting its migration to the environment. The effectiveness of these solutions largely depends on the chemical form in which tritium is released. Experience from the outgassing of tritium from various types of waste indicates that it is released in two main chemical forms: tritiated hydrogen (HT) and tritiated water vapor (HTO), in varying proportions.
However, the mechanisms determining the distribution of tritium between these two species are not well understood. Several factors, such as oxygen and water concentrations, the nature and surface state of the waste, and the concentration of tritium, can influence this speciation.
The objectives of this thesis are as follows:
- To identify the phenomena affecting the speciation of tritium during the outgassing of tritiated waste.
- To conduct an experimental study to verify the proposed hypotheses.
- To develop a numerical model to predict the proportions of HT and HTO released, in order to optimize the management of this waste.
The thesis will be conducted within the IRESNE Institute (Institute for Research on Nuclear Systems for Low Carbon Energy Production) at the CEA site in Cadarache, in a laboratory specialised in tritium studies. The PhD candidate will work in a stimulating scientific environment and will have the opportunity to showcase their research work. The candidate must hold an engineering degree or a master’s degree in Chemical Engineering, Process Engineering, or Chemistry.

Bottom-up synthesis of nanographene and study of their optical and electronic properties

This project is part of an ANR project, which aims to synthesize perfectly soluble and individualized graphene nanoparticles in solution and incorporate them into spin electronics devices. To do this, we will draw on the laboratory's experience in synthesizing and studying the optical properties of graphene nanoparticles to propose original structures to several groups of physicists who will be responsible for studying the optical and electronic properties and manufacturing spin valve-type devices.

Characterization of radiolytic mechanisms in tritiated water–zeolite systems under storage conditions

The operation of the tritium facilities at Valduc generates low-activity tritiated liquid effluents, which are stored in an adsorbed form on 4A zeolite for operational reasons. Understanding the mechanisms of self-radiolysis of this confined water is essential for optimizing storage conditions.
Several PhD projects have already investigated these mechanisms by combining experiments and modelling. Early work showed that below 13% hydration, the radiolytic gases H2 and O2 can recombine within the zeolite. Subsequent studies, based on DFT calculations and molecular dynamics, identified the adsorption sites and the mobility of the gases. They revealed a hydration threshold (13–15%) above which gas diffusion becomes very low, consistent with the experimentally observed cessation of recombination. However, these simulations rely on idealized models.
The new proposed PhD aims to shift the project back toward experimental work in order to better reflect real storage conditions. It will begin with a detailed characterization of the zeolite used industrially. Water–zeolite reservoirs will then be irradiated to simulate the effect of tritium, and analyzed by NMR and possibly by Electron Spin Resonance (ESR) to detect reactive species. The experimental results may feed into a macroscopic model (Kinetic Monte Carlo, KMC), also developed previously, to predict the evolution of the system and identify possible optimizations for storage. The work will be carried out mainly at the NIMBE laboratory (CEA-CNRS), with simulation collaboration in Besançon and regular exchanges with CEA Valduc.

Tailored Peptide Ligands for Actinide Complexation: From Structure to Selectivity

The processes involved in the nuclear fuel cycle, such as the PUREX process designed to separate uranium and plutonium from fission products, rely on ligands capable of selectively complexing actinide cations to enable their extraction. The chemical functions carried by these ligands play a key role in determining both their affinity and selectivity toward metal cations. Studying the influence of these functional groups, such as carboxylic acids and phosphates, is therefore essential for the design of new extracting molecules, as well as for the development of decorporation strategies.
Over the past decade, cyclic peptides have been developed for their ability to complex uranyl ions with high selectivity over calcium. Organized in ß-sheet conformations, these peptides display a functional face bearing complexing groups (carboxylates, phosphates). Their amino acid composition can be tuned to finely adjust the chemical nature of the coordination site, making these cyclic peptides tailor-made molecular architectures for probing cation complexation. However, while their interaction with uranium is now well characterized, their ability to bind transuranic elements remains largely unexplored.
This PhD project aims to study the complexation of actinides such as plutonium and neptunium by various cyclic peptides. The combination of NMR spectroscopy and classical molecular dynamics simulations will provide detailed structural information on the formed complexes. Complementary techniques, including UV-Vis-nIR and EXAFS spectroscopies, ESI-MS mass spectrometry, and fluorescence spectroscopy, will deepen the characterization. By combining experimental and computational approaches, this work will enhance our understanding of ligand–actinide interactions while paving the way for the design of innovative extracting and decorporating molecules.

Investigation of autocatalysis phenomena occurring in nitric acid dissolution through electrochemical methods

The nuclear fuel recycling process, used at the La Hague plant in France, begins with the nitric dissolution of spent fuel, mainly composed of uranium and plutonium oxides. In a context of plant renewal and widespread of MOX fuel recycling, innovative new dissolution equipment are currently studied. The sizing of such devices is currently limited by the absence of a fully comprehensive model for the dissolution of mixed oxides, which is a highly complex reaction (three-phase involved, self-catalytic, heterogeneous attack, etc.). Despite substantial progress made in previous studies, a number of questions remain unanswered, particularly concerning the reaction mechanisms involved and the nature of the catalyst.
Electrochemical methods (cyclic voltammetry, electrochemical impedance spectroscopy, rotating electrode, etc.) have never been used to understand dissolution, yet they should prove relevant as already demonstrated by the studies carried out on this subject by CEA Saclay in the field of corrosion. Therefore, the aim of this thesis is to apply these experimental methods for the first time to the dissolution of nuclear fuels, through a phenomenological approach. To achieve this, the student will be able to rely on the teams and facilities of Saclay and Marcoule centers, specialized respectively in electrochemical methods for the corrosion studies and the physico-chemical modeling of dissolution.
This cross-disciplinary study, involving materials science, electrochemistry and chemical engineering, will follow a stimulating fundamental research approach, but will also take place in a highly dynamic industrial context. Initially, the work will be carried out on inactive model and noble materials (at the Saclay center), then on real materials containing uranium and/or plutonium (at the Marcoule center).

Study of homogeneous SIMMOX synthesis and dissolution based on hydroxide pathway

The dissolution of spent nuclear fuel is an essential first step in its reprocessing. The kinetics of irradiated (U,Pu)O2 (MOX) dissolution currently hinders industrial-scale reprocessing and therefore requires a better understanding of the mechanisms involved in order to overcome this industrial obstacle. However, studying the dissolution of irradiated MOX fuel in order to identify and model the various stages and mechanisms involved is hampered by the high radiotoxicity of such material and the representativeness of the available samples. In order to simplify these studies and establish representative models, numerous tests have been carried out on model compounds (e.g., non-irradiated UO2 and MOX). Among these, SIMfuel (U,Pu)O2 compounds doped with up to 11 fission products aim to represent the chemical complexity of irradiated fuels. The conventional approach to manufacturing SIMfuel by mixing solid-phase reagents requires sintering of fuel pellets at high temperatures (>1600°C). In order to reproduce the behavior of fission products (reduction-oxidation, distribution, etc.) for irradiated fuels at lower temperatures, an alternative approach has been developed based on the synthesis of oxides via the hydroxide route. This method allows for the simultaneous and homogeneous precipitation of numerous metal cations and significantly lowers the sintering temperature. This approach has already enabled the study of SIMfuel incorporating rare earths, platinoids, and molybdenum under representative conditions. However, this approach has never been implemented for the synthesis of SIMfuel containing both plutonium and all fission products relevant to the study of dissolution.
The objective of this thesis is to implement such syntheses, based on recent results obtained concerning the synthesis of MOx by the hydroxide route. To this end, SIMfuels will be synthesized to represent spent MOx-type fuels (SIMMOx). To represent the different zones present in spent fuel, SIMMOx with different Pu/(U+Pu) ratios will be considered. These SIMMOx will undergo dissolution tests to characterize their behavior during this stage.

TRANSIENT LIQUID PHASE SINTERING OF UOX AND MOX FUEL PELLETS

The subject is related to the manufacture of UOX and MOX fuels. The main objective is to identify dopant pairs that allow the formation of a transient liquid phase during the fuel sintering step. For this, phase diagram calculations using the CALPHAD method will have to be carried out, also taking into account the requirements related to the irradiation phase once the fuel is loaded into the reactor. The most promising pairs will then be evaluated in the context of the manufacture of a UOX fuel and a MOX fuel. The experiments to be carried out will essentially be: the preparation of a powdery material, the shaping by pressing of this material in the form of cylinders representative of fuel pellets and the study of the high-temperature sintering of these UOX and MOX formulation cylinders. After sintering, a very important step will be the characterization at the macroscopic and microscopic scales of these pellets. The first year of the thesis will take place at the CEA center in Cadarache. The next two will take place at the CEA site in Marcoule. The first year of the PhD will take place at the CEA Cadarache center within the ICPE Uranium Fuel Laboratory. The following two years will be spent at the INB Atalante facility on the CEA Marcoule site. The candidate will work in two facilities unique in Europe and will be able to develop experience working in a nuclear environment with a highly innovative approach that will lead to the publication of original scientific results.

Study of new concepts for miniaturizable and parallelizable liquid-liquid extractors

In the process of developing procedures, their miniaturization represents a major challenge for upstream research and development (R&D). Indeed, the miniaturization of procedures offers numerous advantages in terms of reducing the volume of raw materials, waste management, screening possibilities, automation, and safety for personnel.
To date, the counter-current liquid-liquid extraction process does not have a convincing miniaturization solution, although the applications are numerous: in pharmacy, chemical synthesis, nuclear, or nuclear medicine.
The CEA-ISEC in Marcoule has developed new microfluidic tools to perform these operations in a simple and operational manner, based on a fine understanding of the instabilities of two-phase flows in capillaries.
This 3-year study topic proposes:
- To experiment, understand, and finely model the flows and mass transfers;
- To optimize and then transpose the phenomena to industrially significant volumes;
- To publish and participate in international conferences.
The doctoral student will benefit from learning about the world of research in a team that values quality in the supervision and future of its doctoral students, in a multidisciplinary team ranging from process engineering to instrumentation, with projects ranging from research to industry.
General competencies in chemical engineering and mass transfer are required. Competencies in collaborating with our academic partners will be essential to the success of the study project.

Development of 4D-STEM with variable tilts

The development of 4D-STEM (Scanning Transmission Electron Microscopy) has profoundly transformed transmission electron microscopy (TEM) by enabling the simultaneous recording of spatial (2D) and diffraction (2D) information at each probe position. These so-called “4D” datasets make it possible to extract a wide variety of virtual contrasts (bright-field imaging, annular dark-field imaging, ptychography, strain and orientation mapping) with nanometer-scale spatial resolution.
In this context, 4D-STEM with variable beam tilts (4D-STEMiv) is an emerging approach that involves sequentially acquiring electron diffraction patterns for different incident beam tilts. Conceptually similar to precession electron diffraction (PED), this method offers greater flexibility and opens new possibilities: improved signal-to-noise ratio, faster two-dimensional imaging at higher spatial resolution, access to three-dimensional information (orientation, strain, phase), and optimized coupling with spectroscopic analyses (EELS, EDX).
The development of 4D-STEMiv thus represents a major methodological challenge for the structural and chemical characterization of advanced materials, particularly in the fields of nanostructures, two-dimensional materials, and ferroelectric systems.

Top