Study of the influence of the microstructure of a 316L steel produced by the L-PBF process on its mechanical properties: characterization and modeling of creep and fatigue behavior
Research into additive manufacturing for the nuclear industry shows that the production of 316L austenitic steel components using laser powder bed fusion (L-PBF) presents technical challenges, including process control, material properties, qualification and prediction of mechanical behaviour under service conditions. The final properties differ from traditional processes, often exhibiting anisotropy that challenges existing design standards.
These differences are linked to the unique microstructure resulting from the L-PBF process. Controlling the manufacturing chain, from consolidation to qualification, requires an understanding of the interactions between process parameters, microstructure and mechanical properties.
The aim of this thesis is to study the relationships between the microstructure, texture and mechanical properties of 316L steel manufactured by the L-PBF process, under static or cyclic loading. This includes the influence on creep and fatigue properties, and the development of a model to predict mechanical behaviour. Using samples of 316L steel with specific microstructures consolidated by L-PBF, the proposed study aims to establish links between microstructure and mechanical properties to better predict in-service behaviour.
Thermally activated glide of screw dislocations in bcc metals
Thermally activated glide of dislocation is a key point for understanding the plastic deformation of metals. The screw dislocation in bcc metals is an archetypical case for which a large quantity of experimental data has been published in the scientific literature. It is then possible to compare these data to the theoretical predictions realized from the Vineyard statistical theory [1,2]. Such a theory is an essential tool allowing to perform a scale transition from atomistic computations toward macroscopic scale at which are realized the deformation tests.
The aim of our research will be to test Vineyard theory in comparison with molecular dynamics simulations [3]. Some preliminary computations have shown a significant discrepancy that is not present when we repeat the comparison for point-like defect as vacancies or self-interstitial atoms.
[1] Vineyard G.H., J. Phys. Chem. Solids 3, 121 (1957).
[2] Proville L., Rodney D., Marinica M-C., Nature Mater. 11, 845 (2012).
[3] Proville L., Choudhury A., Nature Mater. 23, 47 (2024).
Influence of ionization density in water on fluorescent solutes. Application to the detection of alpha radiation
The location and rapid identification, at a distance, of sources of alpha and beta particle emissions on surfaces or in wet cavities or solutions, in nuclear facilities undergoing decommissioning or to be cleaned up, is a real challenge.
The aim of the proposed PhD project is to develop a concept for the remote detection of fluorescence light from water radiolysis processes on molecules or nano-agents. Temporal characterization using fluorescence lifetime measurements will enable detection to be attributed to a type of radiation, depending on its linear energy transfer (LET). In the Bragg peak of alpha radiation, where the TEL is maximal, the ionization density due to this TEL influences the fluorescence lifetime. However, dose rate effects also need to be considered.
Molecules and nanoparticles that are candidates for forming fluorescent products and are sensitive to the ionization density and radicals produced in traces at very short times will be identified by guided bibliography work, then tested and compared by measurements. Spectral measurements (absorption and fluorescence) and fluorescence lifetimes of the corresponding fluorescent species will be carried out using the multi-channel (16-channel) TCSPC (Time Corelated Single Photon Counting) method. Ion beams or alpha particles from sealed sources will be used for proof-of-concept. Ion beams or alpha particles from sealed sources will be used for proof-of-concept in the CEA clean-up/dismantling program.
Reactive metals corrosion in innovative binders – Experimental study and hydro-chemo-mechanical modelling
Nuclear waste management requires the packaging of several kinds of metal wastes for long-term storage. These wastes, which can be very reactive metals, are prone to corrosion and commonly immobilised into containers with hydraulic binders as embedding matrices. Innovative binders (low carbon cements, alkali activated materials) are thus developed to increase the packaging performances. The main objective of the European project STREAM (in the frame of the Eurad-2 program) is to evaluate the interactions between these metal wastes and the selected cement matrices. The PhD thesis purpose is to investigate the reactive metal corrosion in the selected binder with electrochemical techniques. A generic experimental protocol will be developed in order to determine the impact of the corrosion products growth at the metal/binder interface on the global mechanical behaviour of the binder-waste composite and possible micro-cracks occurrence. A post-mortem characterisation will be performed on the metal/binder microstructure with mechanical properties measurements of the materials at the interface, especially the corrosion products. Afterwards, these results will feed a simplified Hydro-Chemo-Mechanical (HCM) model aiming the simulation of corrosion consequences on the composite material behaviour. Subsequently, this model will be used for long-term simulation at the waste package scale.
This research project is aimed at a PhD student wishing to improve his/her skills in materials science both in the experimental field and in the modelling/simulation of coupled physicochemical phenomena.
Impact of a sodium nitrate saline plume on the radionuclide confinement properties of cementitious matrices
Using modelling to predict the migration of radioactive species through a well-known porous matrix, such as concrete, is a major challenge for society, particularly in the context of studies linked to the radioactive waste management. Demonstrating that the proposed model is robust through targeted laboratory experiments under extreme chemico-physical conditions is one of the scientific challenges proposed by the CEA as part of this PhD research project.
The young reseacher will be responsible for designing, carrying out and modelling experimental lab-tests on the retention and diffusion of radionuclides of interest in controlled cementitious conditions or under perturbation due to the nitrate plume leading to very high concentrations in the pore solution. The main expected result is to propose a predictive model coupling chemistry under extreme ionic strenght conditions and transport through complex cementitious matrices, validated by experimental data acquired on simple systems.
Surrounded by a team of experts in the field of measuring and modelling radionuclides migration in porous media, the PhD student will be able to develop or extend his/her skills in the following areas: chemistry, analytical chemistry, physico-chemistry, radiochemistry and modelling.
Covalent 2D organic nanostructures by optically controlled cross-linking of molecular self-assemblies
The self-assembly of molecules on crystalline substrates leads to non-covalent 2D structures with interesting properties for various fields such as optoelectronics and sensors. The stabilization of these 2D networks into covalent networks, while preserving these properties, is a major challenge and a topical issue. Various demonstrations show that crosslinking can be triggered by thermal processes. Photocrosslinking, on the other hand, is poorly described and the few examples that have been found involve ultra-high vacuum conditions.
Building on our previously developed know-how and the additional expertise of chemist collaborators, we therefore propose to carry out photocrosslinking of 2D networks at atmospheric pressure. We will use a model oligophenyl system that will be functionalized to allow photocrosslinking towards the production of a covalent 2D network. The resulting networks will be characterized through the correlation of optical spectroscopy and local probe microscopy to monitor and highlight photo-induced cross-linking processes at wavelength scale.
Control of two-dimensional magnetism by structural and chemical engineering of van der Waals interfaces
2D materials exhibit tunable interlayer interactions due to weak van der Waals bonding, which influences magnetic ordering in 2D magnets. The stacking sequence and internal chemistry impact ferromagnetic (FM) or antiferromagnetic (AFM) ordering, as seen in materials like CrBr3, CrI3, and Fe5GeTe2, where doping with Co raises the Curie temperature and alters magnetic phases. Chemical disorder also affects magnetic properties, with Mn/Sb substitution promoting FM ordering in Mn(Bi,Sb)2Te4. However, understanding how the atomic structure affects macroscopic magnetic properties remains limited due to the coexistence of metastable configurations. Precise control over stacking and chemical order is needed to harness 2D materials' magnetic and quantum properties. Transmission electron microscopy (TEM), especially aberration-corrected STEM, is today one of the most powerful techniques, enabling atomic-scale imaging and spectroscopy, for studying structural and chemical properties of 2D materials. This PhD project aims to study the relationship between atomic structure, chemistry, and magnetic properties in epitaxial 2D layers like (Fe,Co)5GeTe2, combining growth via molecular beam epitaxy (MBE) with STEM-based structural and chemical analysis.
Design and implementation of cryogenic electronics for signal acquisition at cryogenic temperatures
The aim of our proposed thesis is to demonstrate that it is possible to integrate at cryogenic temperatures the entire instrumentation chain for reading and controlling quantum components at cryogenic temperatures
qubits. In other words, we are seeking to place in-situ, in the cryostat and as close as possible to the quantum components
(qubits), all the systems that are currently located outside. In addition, to achieve a major breakthrough
we are aiming for a fully programmable microwave chain (> 2 GHz). This is the subject of an ongoing thesis
financed by the Agence Innovation Défense (AID) and the Commissariat à l'Énergie Atomique (CEA) and a RAPID-type project application.
RAPID type project.
As part of this thesis, we will start at a few hundred MHz. Several main problems
are identified and need to be solved, including
- design and integration of chiplets in System-in-Packages (SiPs) compatible with cryogenic temperatures ;
- interfacing and integrating the Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) and processing components;
- manage high data rates (several tens of Gbit/s per qubit);
- maximum roundtrip latency of 200 ns;
- energy management (a few tens of mW budget per qubit);
- choice of cryogenic stages adapted to the different processing stages;
- choice of independent technologies
Innovative syntheses of perovzalates and rationalization of the formation mechanism by synchrotron methods
“Perovzalates” are a new family of hybrid perovskites based on oxalate, with around ten examples listed since 2019 (AILi3MII(C2O4)3, with A = K+, Rb+, Cs+, NH4+; M = Fe2+, Co2+, Ni2+). Just like conventional perovskites, they are potentially interesting for countless applications (catalysis, optics, solar etc.), presenting additional advantages linked to the oxalate anion, which allows the incorporation of larger cations than in other hybrid pervovskites, while preserving a crystal structure similar to oxide perovskites.
However, this class of new materials is still barely explored, and the syntheses far from being mastered: the few reports to date systematically produce mixtures of phases, and relate to single crystals taken from heterogeneous solutions. In this context, the major problem is to synthesize an extended class of pure perovzalates.
This thesis addresses this challenge by exploiting a property discovered in the laboratory: the crystallization of metal oxalates by co-precipitation in water passes through transient “mineral emulsions”, that is to say nano-droplets rich in reagents which separate from water. The originality of this thesis is to exploit the nanostructuring provided by these mineral emulsions, and to test in particular using nanotomographic techniques accessible in synchrotron if they make it possible to confine the cations until crystallization.