Physicochemical Properties of Antimony-containing Photovoltaic (PV) Glass
The proposed PhD thesis is part of the ANR GRISBI project (2026–2030), which aims to optimize the recycling of glass from photovoltaic (PV) panels. These glasses, predominantly manufactured in China, are doped with antimony oxide (Sb2O3) to ensure high transparency while keeping production costs low. However, the presence of antimony currently prevents the recycling of these glasses within the European flat glass industry, which would otherwise greatly benefit from this secondary raw material to reduce its environmental footprint — particularly its greenhouse gas emissions, in line with the carbon neutrality targets set by the Paris Agreement (2015). To make the recycling of PV glass into flat glass production feasible, it is therefore essential to gain a deeper understanding of the physicochemical behavior of antimony in glass, and more generally, within the float process, which involves a hot glass / liquid tin interface.
The core scientific objective of the PhD is to determine the redox equilibria between the multivalent species present in PV glasses, in particular the Sb2O3/Sb and Fe2O3/FeO couples. The work will involve preparing glasses with different Sb2O3 contents, then determining the mechanisms of antimony incorporation into the glass structure, as well as the temperature and oxygen partial pressure (pO2) conditions leading to the reduction of Sb³? to metallic Sb°. Experimental results, based on advanced materials characterizations such as SEM, XRD, EXAFS, and XANES, will be used to enrich thermodynamic databases and to develop a methodology enabling the recycling of Sb-doped PV glasses in flat glass production.
The PhD will be conducted at CEA Marcoule, in collaboration with IMPMC (Sorbonne Université) — two laboratories internationally recognized for their expertise in glass science. All glass samples will be synthesized by the PhD student, and their characterization will primarily rely on facilities available at CEA and IMPMC.
A background in Materials Science is required. This research project will provide the PhD candidate with the opportunity to develop strong expertise in applied glass science and industrial recycling technologies.
Origins and consequences of the heterogeneous alteration of nuclear glasses
This PhD project focuses on the long-term behavior of nuclear glasses used to confine long-lived radioactive waste.
In aqueous environments, these glasses generally undergo homogeneous alteration: the transformation into alteration products occurs at a uniform rate across the entire surface.
However, cases of heterogeneous alteration also exist, where the glass/gel interface becomes irregular, forming pits or cavities.
Two key questions arise: what are the mechanisms responsible for that behavior, and what are the consequences for the long-term durability of the glass?
Several hypotheses have been suggested in the literature, such as local fluctuations in solution composition or mechanical stress at the glass surface, but no definitive explanation has yet been established.
The proposed approach combines accelerated experiments with chemical, mechanical, and structural characterizations, as well as modeling (e.g., mesoscopic and Monte Carlo models).
Experiments will be conducted on glasses with various surface states (polished, irradiated, fractured, etc.) using analytical tools such as SEM, TEM, and nanoSIMS.
Once the mechanisms are identified, the long-term impact of these heterogeneous alteration patterns can be assessed.
The project seeks candidates with a background in chemistry or materials science, strong interest in modeling, and solid theoretical knowledge.
Microemulsion model: Towards the prediction of liquid-liquid extraction processes
This multi-scale modeling PhD project aims to develop innovative theoretical approaches and numerical tools to predict the extraction processes of strategic metals, which are essential for the energy transition. Among the existing methods, liquid-liquid extraction is a key process, but its underlying mechanisms remain poorly understood. To address these challenges, the solvent phases will be represented as microemulsions through a synergy of mesoscopic and molecular modeling approaches.
The mesoscopic approach will involve the development of a code based on microemulsion theory using a random wavelet basis. This code will enable the characterization of the structural and thermodynamic properties of the solutions. The molecular approach will rely on classical molecular dynamics simulations to evaluate the curvature properties of the extractants, which are essential for bridging the two scales.
The new high-performance computational code may integrate artificial intelligence techniques to accelerate the minimization of the system’s free energy while accounting for all chemical species present with a minimal number of parameters. This will pave the way for new research directions, such as predicting speciation and calculating thermodynamic instabilities in ternary phase diagrams, thereby identifying unexplored experimental conditions.
This PhD thesis, conducted at the Mesoscopic Modeling and Theoretical Chemistry Laboratory at the Marcoule Institute for Separation Chemistry, will have applications in the recycling domain and extend to the broader field of nanoscience, thereby expanding the impact of this work.
The PhD candidate, with a background in physical chemistry, theoretical chemistry, or physics and a strong interest in programming, will be encouraged to disseminate their scientific results through publications and presentations at national and international conferences. By the end of the thesis, the candidate will have acquired a broad range of skills in theoretical chemistry, modeling, numerical computation, and physical chemistry, providing numerous career opportunities in both academic research and industrial R&D.
Influence of a nano-antenna on the intersystem crossing rate of a single molecule
As part of the continuation of the ANR JCJC PlasmonISC project, we propose a thesis subject mainly experimental in nano-photonics. The objective of the thesis is to study the influence of a nano-antenna (plasmonic, magnetic or dielectric) on the rate governing the photophysics of fluorescence emission from a single molecule, with a particular interest in the intersystem crossing rate. We have developed a dedicated optical bench combining optical and atomic force microscopy, an experimental procedure, as well as signal processing tools, showing encouraging first results with a dielectric tip. We wish to continue to explore the single molecule/nano-antenna interaction with other types of tips generating other physical effects. The ability to control the transition to the triplet state is of great interest for single photon sources, organic light emitting diodes, and in chemistry.
Understanding the effect of doping on the lifespan of advanced Li-ion battery electrode materials
The development of new electrode materials for Li-ion batteries is primarily focused on two often contradictory objectives: increasing the energy density, and thus the range of vehicles, and reducing the cost of batteries. Disordered NaCl-structured materials, such as Li2MnO2F, thanks to the combination of their Mn-rich, low-cost composition and high Li-ion storage capacity, allow these two aspects to be reconciled. Unfortunately, these materials undergo rapid degradation during cycling, which limits their lifespan. It is therefore necessary to address this degradation to make these materials competitive. Recently, our group has developed a strategy for stabilizing the material by modifying its structure, which is the subject of a patent. The goal of this thesis is to deepen this strategy by improving the understanding of the stabilization mechanism by varying its parameters. The PhD student will have access to all synthesis tools to realize these new materials, as well as electrochemical characterization tools on our battery platform to evaluate their performance. The student will also be required to perform in-depth structural characterizations, notably via various X-ray diffraction methods (including synchrotron).
Explainable AI for interpretation of Small Angle Scattering
The PhD will be conducted in two laboratories at Paris-Saclay: one group with expertise in artificial intelligence developed over many years, MIA-PS (INRAE), and another in the physics of matter – soft matter, biology – MMB-LLB (CEA/CNRS).
Small-Angle Scattering techniques (X-rays, neutrons, light) involve a constantly growing community, particularly active in France, especially in soft matter and biology. The transition of data from reciprocal space to real space is achieved via different models – in which the MMB group is an expert – whether concerning shape – sphere, rod, platelet, polymer chain – or interactions – attraction, aggregation, repulsion, arrangement. Furthermore, more complex structures, such as proteins or irregular aggregates, require computational or empirical approaches. In all cases, the results are not unequivocal. This is particularly challenging for research groups new to the technique.
In this thesis, thanks to MIA-PS's expertise in AI (machine learning, optimization, visualization), the focus will be on developing explainable AI methods. Part of the modeling involves explained mathematical and physical models, while another part relies on so-called "black box" models, which will be progressively explained. The doctoral candidate will have access to data from three use cases provided by the LLB, and to their experts, to develop a generic methodology. A first step could be based on the globally shared software SasView, a treasure trove of explicit models. We have already received a positive response from the SasView developers, which could therefore serve as a dissemination tool. A valuable contribution will be the access to complementary DPA measurements via the LLB platforms and the SOLEIL and ESRF synchrotrons.
Subsequently, a component focusing on human-computer interaction—ensuring that users remain fully responsible for constructing a physico-chemical-biological explanation—can be implemented. MIA-PS is also an expert in advanced interactive visualization methods.
This project therefore combines highly advanced developments in computer science with a wealth of real-world systems chosen for their originality and, of course, their potential applications.
New concepts for cold neutron reflectors
The CEA and the CNRS have launched an initiative to design a new neutron source using low-energy proton accelerators, the ICONE project [1]. The goal is to build a facility that will provide an instrumental suite of about ten spectrometers available to the French and European scientific community. Alongside ICONE, the LLB is also participating in HiCANS R&D work on the construction of a platform in Bilbao to facilitate European collaborations.Neutron scattering experiments require thermal and cold neutrons. The design of the moderator is therefore a crucial component of the project to maximize the source's performance.
One avenue for improving the moderator performances is to enhance the efficiency of the reflector, and more specifically, the cold neutron reflector. In this study, we propose to investigate the specific scattering properties of cold neutrons on nanostructured materials. Indeed, cold neutrons have long wavelengths (> 0.4 nm) and can therefore be coherently scattered by nanostructured materials. Scattering efficiency is not only amplified by coherent scattering effects, but it is potentially possible to direct this scattering if the reflecting material is anisotropic. This control over the scattering direction can further increase the moderator's brightness.
The first part of the work will consist of identifying the most promising nanostructured materials and modeling their cold neutron reflectivity performance. In a second step, these materials will be shaped and their properties characterized using neutron scattering devices at neutron scattering facilities such as the ILL in Grenoble or the PSI in Switzerland.
Toughening random lattice metamaterials with structure heterogeneities
To reduce the environmental and/or the energetic impact of vehicles, a favored method is to decrease the mass of prime materials used to build them, that being done without hindering their mechanical performances. In this field, the use of mechanical metamaterials has been a major breakthrough. These metamaterials, generally created using additive manufacturing techniques, have a microscopic truss structure. They are porous by design, and thus very lightweight, and the distribution of their microscopic beams or tubes (i.e. their architecture) can be chosen to make them as stiff as possible, making them choice candidates for high technology applications where the rigidity-density ratio is paramount, such as aerospatial research (https://en.wikipedia.org/wiki/Metallic_microlattice).
For the most part however, metamaterials that have been designed up to now present periodical architectures. As a consequence, their mechanical behavior is inherently anisotropic, which makes them difficult to model using material mechanics conventional approaches, and strongly limits their usage in various possible fields of applications. In recent works, we have developped a new class of microlattice metamaterials with a random spatial distribution of beams, generated with a combination of random close packing and Delaunay triangulation algorithm then 3D-manufactured. These metamaterials show an isotropic mechanical behavior, and their stiffness-density ratio reaches the theoretical limit for porous materials. They are neverheless still fragile and subject to fracture and yielding.
The aim of this PhD project is to toughen these metamaterials based on techniques and mechanisms from polymer and soft matter physics. Our hypothesis is that including in a controlled statistical way structure heterogeneities, at the node level by modulating the connectivity or at the beam level by changing their section or shape, can allow toughening of the metamaterial. Indeed, localized heterogeneities can introduce mechanical dissipations in the network at various scales. The work of this project will consist in experiementally characterizing the mechanical properties of the metamaterials and to compare them to their homogeneous equivalent, and to describe their fracture resistance. Mechanical tests will be performed on an experimental setup conceived in the SPHYNX group. Analysis of the local and global deformation will be performed using different experiemental methods, in order to detect micro crack events with precision. An additionnal theoretical approach completed by numerical simulations based on fuse network and random beam models can also be discussed.
A strong interest for instrumentation and teamwork is requested for this project with a major experimental component. Proficiencies in experimental mechanics, material sciences and/or statistical physics are desirable. Some knowledge in modelization and numerical simulations are a bonus without being required. This project has both fundamental and applied interests and can help the student find prospects both in academia and in industrial opportunities.
CONTEXT: strain - texture neutron instrumentation for ICONE
The CEA and the CNRS have launched an initiative to design a new neutron source using low-energy proton accelerators, the ICONE project. The objective is to build a facility that will offer an instrumental suite of about ten spectrometers available to the French and European scientific community. The project is currently in the Preliminary Design phase, with the aim of refining as much as possible all technical aspects.
We are proposing a PhD thesis on the modeling and development of a new neutron scattering spectrometer for measuring textures and stresses in materials. This technique makes it possible to probe residual stresses in materials after machining, heat treatment, and/or use, and to measure the crystallographic anisotropy of alloys to exploit the induced mechanical properties.
Part of the work will take advantage of the start-up of the DREAM and MAGIC spectrometers at ESS in Sweden, in which the LLB participated in the construction, so that the candidate can become familiar with time-of-flight neutron scattering techniques (measurements and data analysis).
In the second part of this work, we propose to implement statistical modulation techniques for the construction of an instrument, CONTEXT, on ICONE, which will allow to best exploit the potential of ICONE's long pulses. The objective will be to create a digital twin of the future instrument using various Monte Carlo simulation tools.
Investigation of Lanthanide Salt Interactions with Lipid Systems
Lanthanide–lipid interactions have gained significant attention due to their importance in biophysical and technological applications, including magnetic resonance imaging, fluorescence-based cell labelling and drug delivery. This project aims to investigate the interactions between different lanthanide salts (LnX3, where X = Cl?, ClO4?, NO3?, etc.) and lipid aggregates, focusing on the precipitation and gelation phenomena that occur when their concentration exceeds a certain threshold. Understanding these phenomena is essential for studying self-assembly and phase behaviour in soft matter systems. By examining how lanthanide ions interact with lipid aggregates—particularly in the presence of different anions—this study seeks to elucidate their roles in inducing precipitation and gelation. To this end, a combination of spectroscopic, scattering, microscopy, and rheological techniques will be employed to characterize the molecular interactions in lanthanide–phospholipid systems. These investigations will provide insights into the structural and dynamic properties of such systems and support their application in both biophysical and technological contexts.