Spatiotemporal shaping of high-order harmonic emission in nanostructured crystals

We propose to study the spatiotemporal manipulation of radiation emitted by high harmonic generation, leveraging advances in nanofabrication technologies. The approach involves transposing methods developed for meta-optics to the strong-field regime specific to harmonic generation. The candidate will explore various design strategies to control the spatiotemporal properties of this radiation, which is intrinsically linked to the broad spectral bandwidth of attosecond pulses. These concepts will then be implemented and experimentally validated. This project aims to enhance the integration of high harmonic generation into optoelectronic devices, paving the way for new applications in ultrafast photonics.

Understanding the signals emitted by moving liquids

Elasticity is one of the oldest physical properties of condensed matter. It is expressed by a constant of proportionality G between the applied stress (s) and the deformation (?): s = G.? (Hooke's law). The absence of resistance to shear deformation (G' = 0) indicates liquid-like behavior (Maxwell model). Long considered specific to solids, shear elasticity has recently been identified in liquids at the submillimeter scale [1].
The identification of liquid shear elasticity (non-zero G') is a promise of discoveries of new liquid properties. For example, do we know that a confined liquid changes temperature under flow? Yet no classical model (Poiseuille, Navier-Stokes, Maxwell) predicts the effect because without long-range correlation between molecules (i.e. without elasticity), the flow is dissipative, therefore athermal. For a change in temperature to be flow induced (without a heat source), the liquid must have elasticity and this elasticity must be stressed [1,2].
The PhD thesis will explore how the mechanical energy of the flow is converted in a thermal response [2]. We will exploit the capacity of conversion to develop a new generation of microfluidic devices (patent FR2206312).
We will also explore the impact of the wetting on the liquid flow, and reciprocally, we will examine how the liquid flow modifies the solid dynamics (THz) of the substrate [3]. Powerful methods only available in Very Large Research Facilities such as the ILL will be used to probe the non-equilibrium state of solid phonons. Finally, we will strengthen our existing collaborations with theoreticians.

The PhD topic is related to wetting, macroscopic thermal effects, phonon dynamics and liquid transport.

1. A. Zaccone, K. Trachenko, “Explaining the low-frequency shear elasticity of confined liquids" PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117
2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi : 10.1038/s41598-020-69404-1.
3. M. Warburton, J. Ablett, P. Baroni, JP Rueff, L. Paolasini, L. Noirez, “Identification by Inelastic X-Ray scattering of bulk alteration of solid dynamics due to Liquid Wetting”, J. of Molecular Liquids 391 (2023) 123342202

Exploration of VACNTs in Anode-less Batteries: Mechanism and Cell Optimization

Anode-less or anode-free batteries are getting increasing attention owing to their excellent energy density, cost efficiency, and ease of process upscaling. Exploring anode-less battery will offer a breakthrough in energy storage devices by using the lithium reserve already present in the NMC cathode to reversibly cycle after an initial formation process, which will reduce the overall thickness, processing steps, and cost of materials, and provide excellent energy density. Vertically aligned CNTs (VACNTs) on metal substrates can be an interesting choice for this application due to their low thickness, reproducible synthesis process, and uniform surface properties, which have already proven their applicability in supercapacitors. In this PhD project, we will investigate their newer avenue of applications- anode-less batteries, where VACNTs act as the lithium or sodium plating substrate. We will study the electrochemistry of VACNT in lithium anode-less batteries (in liquid and solid electrolytes) and in sodium anode-less batteries in a liquid electrolyte. The PhD student will work on the synthesis optimizations of VACNT to tune the thickness and density to match their electrochemistry. Post-cycling studies (Raman and SEM) will be carried out to study the effect of cycling and the electrolytes on the VACNT layers. The project aims to explore the possibility of the application of VACNTs in various energy storage systems, which can open up new application possibilities and valorization

https://iramis.cea.fr/lidyl/pisp/150720-2/

Recent advances in ultrafast optics and the control of highly nonlinear light–matter interactions now make it possible to generate attosecond light pulses (1 as = 10?¹8 s) through High-Order Harmonic Generation (HHG). This process converts a femtosecond laser pulse into coherent, ultrashort radiation in the extreme ultraviolet (XUV) range (10–150 eV). These unique light sources enable access to electronic dynamics on sub-femtosecond timescales and allow the probing of element-specific transitions that were previously only achievable at large-scale facilities such as synchrotrons. The Attophysics Group at LIDYL, a pioneer in the generation, characterization, and application of attosecond pulses, has recently developed sources driven by beams carrying spin (SAM) or orbital (OAM) angular momentum, opening new avenues for studying chiral and magnetic dynamics. Building on these advances, this PhD project aims to synthesize light fields with time- and space-dependent chirality, exploiting in particular the often-neglected longitudinal component of the electric field. Three regimes will be explored: a linear regime (XUV/IR pump–probe), a strongly nonlinear regime (structured visible–IR fields in chiral samples), and a weakly nonlinear regime (IR pump/XUV probe). This work will open a new class of attosecond physics experiments, bridging fundamental exploration and emerging applications.
The student will acquire practical knowledge about lasers, in particular femtosecond lasers, and hands on spectrometric techniques of charged particles. They will also study strong field physical processes which form the basis for high harmonic generation. They will become an expert in attosecond physics. The acquisition of analysis skills, computer controlled experiments skills will be encouraged although not required.
Details at https://iramis.cea.fr/lidyl/pisp/150720-2/

Photo- and thermocatalytic cross-coupling of esters for the synthesis of biosourced alkenes

The easy access to energy and carbon-based raw materials offered by the fossil feedstock allowed a rapid growth of our society. Nevertheless, the expected depletion of fossil resources and climate change, require changing for a more sustainable model. Bio-based feedstock is a promising source of carbon to substitute petrochemicals but require a drastic change of the actual model. While the current paradigm relies on the production of energy and high-value molecules through oxidation steps, a model based on Carbon Circular Economy, i.e. the transformation of CO2 and biomass feedstock that are already highly oxidized materials demands the development of new methodologies for reduction, deoxygenation, and the direct use of oxygenated bonds to access functionalized and useful organic molecules.
In organic chemistry, cross-coupling reactions represent one of the major tools to create C–C bonds. However, they are still based mainly on the use of organic halides as electrophiles. In this project, the PhD candidate will demonstrate that readily available and abundant alkyl esters can serve as electrophilic coupling partners in catalyzed cross-coupling reactions with alkenes. Esters can indeed be directly biosourced or easily synthesized from alkyl carboxylic acids and alcohols, thereby diminishing the environmental impact of the carbon-carbon bond formation.

LOW THERMAL CONDUCTIVITY MECHANISMS IN RARE-EARTH OXIDES

Understanding the parameters which determine the magnitude of thermal conductivity (k) in solids is of both fundamental and technological interests. k is sensitive to all quasiparticles carrying energy, whether charged or neutral. Foremost among these are phonons, the collective vibrations of atoms in crystals. Measurements of k, however, have also identified more exotic carriers like spinons in the antiferromagnetic Heisenberg chain. In terms of applications, thermal properties of solids are at the heart of major social and environmental issues. The need, for instance, for highly efficient thermoelectric and thermal barrier devices to save energy has driven the quest for low thermal conductors. Over time, a range of strategies has thus been suggested to hinder phonon velocities and/or mean free paths: use of weak interatomic bonds, strong anharmonicity, nanoscale designs, or complex or disordered unit cells. Another promising concept to further impair the phonon mean-free path is based on magneto-elastic coupling.
Still in its infancy, this concept has emerged from the observation of a spin-phonon coupling in a variety of rare-earths based materials. The magnetic excitations involved in the magnetoelastic coupling at play in those compounds are not standard magnons, but low energy crystal field excitations (CEF). Since the latter are local electronic excitations, they do not disperse and thus cannot be associated with propagating quasiparticles. In other words, they are not potential heat carriers hence do not contribute to k, in contrast with dispersive magnetic quasiparticles like magnons. However, they can significantly reduce the phonon lifetime by opening a new scattering mechanism.
The aim of the PhD thesis is therefore to investigate, both experimentally and theoretically, magnetoelastic coupling and its impact on thermal conductivity. The systems to be studied will be (but not restricted to) Tb perovskites, and will include high-entropy or entropy stabilized compositions, displaying glass-like thermal conductivity.

OCTOCHLORE MAGNETS

In recent years, progress in the field of frustrated magnets have led to the emergence of innovative concepts including new phases of matter. The latter’s do not show any long-range order (no symmetry breaking), but, in classical systems, exhibit a highly degenerate ground state made of classical configurations. An emblematic example is spin ice in pyrochlores : in this case, the construction of those configurations relies on a simple rule, which states that the sum of the four spins in any tetrahedron of the magnetic lattice must be zero. This so-called “ice rule” can be understood as the conservation rule of an emergent gauge field. Experimental evidence of this physics was provided by the observation of singular points in the spin-spin correlation function by elastic neutron scattering experiments. Such singular points, called pinch points, arise because the correlations of the emergent divergence free field are dipolar in nature, with
algebraic spin-spin correlations.
The origin of this physics lies in the conjunction between lattice connectivity, anisotropy and magnetic interactions, which collude to select configurations where a local constraint between spins is preserved. Recently, several authors have proposed a generalization of this concept to other geometries and other constraints, as for instance the “octochlore” lattice, formed by corner sharing octahedra.
Depending on the chosen constraint, different spin liquids have been theoretically predicted.
An experimental realization of the octochlore lattice can be found in rare earth fluorides KRE3F10, as their crystal structure forms a “breathing” network of small and large RE octahedra. Very little is known about the physics of KRE3F10 compounds, apart from magnetization measurements performed two decades ago. The goal of the PhD work will be to characterize the ground state of two Kramers members of the KRE3F10 system (RE = Dy3+, Er3+), to identify in particular any signature of the spin liquid physics suggested by recent theoretical works, and better understand the constraints leading to it.

Triplet superconductors: from weak to strong spin-orbit coupling

Since the 1980s, several unconventional superconductors have been discovered, some of which exhibit triplet pairing (total spin S=1) that may lead to interesting topological properties. Unlike singlet superconductors, their order parameter is a vector depending on the spin components (S_z=-1,0,1) and is strongly influenced by the crystal symmetry and the spin–orbit coupling (SO).
The thesis aims to study the transition between weak and strong spin–orbit coupling in a triplet superconductor, using a minimal multiband model inspired by the material CdRh2As3, where a field-induced triplet phase was recently observed. This research will enable the calculation of the dynamic spin susceptibility and the identification of possible collective spin resonances, similar to those seen in superfluid He3.
The project will mainly rely on analytical field-theoretical methods applied to condensed matter. It is intended for candidates with a solid background in quantum mechanics, statistical physics, and solid-state physics.

Magneto-mechanical stimulation for the selective destruction of pancreatic cancer cells while sparing healthy cells

A novel approach for selectively destroying cancer cells is being developed through a collaboration between the BIOMICS biology laboratory and the SPINTEC magnetism laboratory, both part of the IRIG Institute. This method employs magnetic particles dispersed among cancer cells, which are set into low-frequency vibration (1–20 Hz) by an applied rotating magnetic field. The resulting mechanical stress induces controlled cell death (apoptosis) in the targeted cells.
The effect has been demonstrated in vitro across various cancer cell types—including glioma, pancreatic, and renal cells—in 2D cultures, as well as in 3D pancreatic cancer spheroids (tumoroids) and healthy pancreatic organoids. These 3D models, which more closely mimic the structure and organization of real biological tissues, facilitate the transition to in vivo studies and reduce reliance on animal models. Preliminary findings indicate that pancreatic cancer cells exhibit a higher affinity for magnetic particles and are more sensitive to mechanical stress than healthy cells, enabling selective destruction of cancer cells while sparing healthy tissue.
The next phase will involve confirming this specificity in mixed spheroids (containing both cancerous and healthy cells), statistically quantifying the results, and elucidating the mechanobiological mechanisms underlying cell death. These promising findings pave the way for an innovative biomedical approach to cancer treatment.

Theoretical studies of orbital current and their conversion mechnism for leveraging spin-orbit torques based devices performances

The proposed PhD thesis aims at understanding and identifying the key parameters governing the conversion of orbital moments into spin currents, with the goal of enhancing the write efficiency of spin-orbit torque magnetic random-access memory (SOT-MRAM) devices. The work will employ a multiscale modeling approach comprising ab initio, tight-binding and atomistic calculations of the Orbital Hall Effect (OHE) and Orbital Rashba-Edelstein Effect (OREE). These phenomena exhibit larger magnitudes and diffusion lengths compared to their spin counterparts, Spin Hall Effect (SHE) and Rashba-Edelstein Effect (REE). Furthermore, they are present in a broader range of materials, including low-resistivity light metals. This opens very interesting opportunities for more efficient and conductive materials, potentially lifting the barriers limiting the technological deployment of SOT-MRAM.

This thesis will play a key role in a close collaboration between SPINTEC and LETI laboratories at CEA. The PhD student will conduct ab initio calculations at SPINTEC to unveil fundamental material characteristics to exploit the described orbitronic phenomena, and will construct multi-orbital Hamiltonians at LETI to calculate orbital and spin transport, in strong interaction/synergy with experimentalists working on SOT-MRAM development. The PhD will be co-supervised by M. Chshiev, K. Garello at Spintec and J. Li at LETI. This PhD project will be at the heart of collaborations with leading theoretical and experimental groups at national and international level.

Highly motivated candidates with a strong background in solid-state physics, condensed matter theory, and numerical simulations are encouraged to apply. The selected candidate will perform calculations using Spintec’s computational cluster, leveraging first-principles DFT-based packages and other simulation tools. Results will be rigorously analyzed, with opportunities for publication in international peer-reviewed journals.

Top