Perovskite ferroelectric oxynitride thin films with tunable properties

N-doped oxides and/or oxinitrides constitute a booming class of compounds with a broad spectrum of useable properties and in particular for novel technologies of carbon-free energy production. Indeed, the insertion of nitrogen into the crystal lattice of a semiconductor oxide allows, in principle, to modulate the value of its band gap or to introduce additional electronic states and thus to obtain new functionalities and optical properties. The production of oxynitride single crystalline thin films is highly challenging. In this essentially experimental thesis work, thin films of oxynitrides will be developed by atomic plasma-assisted molecular beam epitaxy. We will start from BaTiO3, which synthesis is well mastered in the laboratory, to realize co-dopings with nitrogen and compensating metals in order to preserve the neutrality of the elementary unit cell. The resulting structures will be studied for their chemical compositions, crystalline structures and ferroelectric characteristics. These observations will be correlated with their performance for the photo-electrolysis of water, which allows the virtuous production of hydrogen. Finally, the corrosion resistance of these new materials will also be studied.
The student will acquire skills in a wide range of ultra-high vacuum techniques, molecular beam epitaxy growth, clean room lithography, ferroelectric measurements and photo-electrolysis of water, as well as in state-of-the-art synchrotron radiation techniques.

The Pd-Rh-Ru-Te-O system in nuclear glasses and its impact on the glass melt conductivity

In France, high-level nuclear waste is vitrified. The components of the waste are integrated in a homogeneous vitreous matrix. However, platinum group metals (PGM) Pd, Rh and Ru are very poorly soluble in the glass melt and they form particles, combined or not with oxygen or tellurium.
Ru and Rh may reduce in their metallic state during glass processing. They are then more electrically conductive and their effect on the physical properties of the glass melt may affect the vitrification process control. Hence, the knowledge of the speciation and the morphology of the PGM elements is essential for the control of the process.
Thereby, this PhD will be split in 2 interdependent approaches: the first one by thermodynamic Calphad calculations and the other one by experimentations. First, the experimental approache will aim to understand and quantify the reduction of (Ru,Rh)O2 and the solubilisation of Ru and Rh in Pd-Te thanks to elaborations and characterizations (SEM and XRD mainly) of glasses with PGM particles. The results will complete a Calphad database. Calculations will help to discuss experimental results and will enable to predict the PGM state in the glass melt during the industrial vitrification. Secondly, electrical conductivity measurements at high temperature will be implemented on the glasses previously made to determine the impact of Ru and Rh speciation on the global conductivity of the melt.
The applicants must be rigorous, autonomous and have good communication and writing skills. Knowledge and experience in the field of glass or thermodynamics would be a plus.

Online analysis of actinides surrogates in solution by LIBS and AI for nuclear fuel reprocessing processes

The construction of new nuclear reactors in the coming years will require an increase in fuel reprocessing capacity. This evolution requires scientific and technological developments to update process monitoring equipment. One of the parameters to be continuously monitored is the actinide content in solution, which is essential for process control and is currently measured using obsolete technologies. We therefore propose to develop LIBS (laser-induced breakdown spectroscopy) for this application, a technique well suited for quantitative online elemental analysis. As actinide spectra are particularly complex, we shall use multivariate data processing approaches, such as several artificial intelligence (AI) techniques, to extract quantitative information from LIBS data and characterize measurement uncertainty.
The aim of this thesis is therefore to evaluate the performance of online analysis of actinides in solution using LIBS and AI. In particular, we aim to improve the characterisation of uncertainties using machine learning techniques, in order to strongly reduce them and to meet the monitoring needs of the future reprocessing plant.
Experimental work will be carried out on non-radioactive actinide simulants, using a commercial LIBS equipment. The spectroscopic data will drive the data processing part of the thesis, and the determination of the uncertainty obtained by different quantification models.
The results obtained will enable publishing at least 2-3 articles in peer-reviewed journals, and even to file patents. The prospects of the thesis are to increase the maturity level of the method and instrumentation, and gradually move towards implementation on a pilot line representative of a reprocessing process.

Perovskite devices for solar hydrogen production

Project Overview:
The PhD thesis is part of the ICARUS European project, aiming to develop efficient solar energy conversion systems for a carbon-neutral future. The project focuses on integrating photoelectrochemical (PEC) water splitting and photovoltaic (PV) power generation.

Key Objectives:
•Develop innovative metal halide perovskite solar cells with tunable bandgaps for broader light absorption.
•Optimize printed carbon-based solar cells and scaffolds for improved conductivity, mechanical resistance, and durability.
•Incorporate innovative carbon counter electrodes into perovskite devices.
•Upscale and manufacture solar modules.
•Integrate the developed modules into a final PEC prototype.

Research Focus:
The PhD candidate will primarily focus on:
•Printed carbon-based solar cells: Optimizing ink properties, investigating the behavior of printed conductive ink under various conditions, and characterizing conductivity and mechanical resistance.
•Perovskite devices: Incorporating innovative carbon counter electrodes and evaluating their performance and stability.
•Module manufacturing: Upscaling and manufacturing solar modules based on the developed technologies.
•PEC prototype integration: Contributing to the final integration of the PEC prototype.

Expected Outcomes:
The research is expected to contribute to the development of highly efficient and sustainable solar energy conversion systems, supporting the transition to a carbon-neutral future. The findings will have implications for both academic research and industrial applications.

Giant magnetoresistance resistors for local characterization of surface magnetic state: towards Non-Destructive Testing (NDT) applications

CIFRE thesis in the field of non-destructive testing using magnetic sensors in collaboration with 3 partners:

Laboratoire de Nanomagnétisme et Oxyde (SPEC/LNO) du CEA Paris-Saclay
Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon
Entreprise CmPhy

Activated conductive materials for energy conversion and energy storage through capacitive effect

Energy production from renewable sources requires efficient storage systems to address imbalances between supply and demand. This project aims to develop cost-effective supercapacitors using composite electrodes derived from industrial by-products. Mineral binders, such as geopolymers or Alkali Activated Materials (AAM), made conductive by dispersing carbon black, are being studied for energy storage or heat generation applications. Based on a recently filed patent, we propose a detailed study of these conductive composites. Their performance will be evaluated depending on formulation and shaping parameters. Additionally, the porous network and the dispersion of conductive charges in the material will be thoroughly characterized. Finally, material shaping tests will be conducted, and supercapacitors will be assembled to study the impact of the process (3D printing) and geometries.

Study of the synthesis and thermodynamic properties of the (An,Zr)O2 and (Zr,An)SiO4 compounds

In the event of a serious nuclear accident, the fuel in the reactor core may melt, resulting in the formation of a compound known as corium. Cases of major accidents and prototypical corium formation experiments have identified the formation of key compounds such as mixed oxides (U,Zr)O2 formed by interaction of the fuel with the zircaloy cladding and silicates (Zr,U)SiO4 formed by interaction of the corium with structural materials. In the case of MOx, (U,Pu)O2 fuels, corium formation could lead to the formation of equivalent phases with significant plutonium contents. However, experimental thermodynamic data on such compounds, which would enable their behaviour to be assessed, are currently non-existent. In this context, determining the conditions for synthesising such compounds with a good degree of purity is essential for acquiring such data. The synthesis of (Zr,Pu)O2 and (Zr,Pu)SiO4 solid solutions is therefore an essential first step before studying (Zr,U,Pu)O2 and (Zr,U,Pu)SiO4 systems.
The aim of this PhD thesis will be to determine the conditions suitable for the synthesis of these compounds, to carry out a series of characterisations enabling their purity to be assessed and their thermodynamic properties to be established. To achieve this, experiments will be carried out on the ATALANTE facility and a multi-technique characterisation approach will be chosen (XRD, Raman and infrared spectroscopies, SEM, synchrotron characterisation techniques, etc.). Solubility tests in a controlled environment will then be set up and calorimetric measurements carried out as part of international collaborations.

Electrolyte ceramics for oxygen potentiometric sensors in aggressive media of advanced nuclear reactor

The solid electrolytes are thought to play major role in future energetic systems (SOFC, SOEC). Among them, oxide ceramics with fluorite structure are particularly important. Correctly doped, their ionic conductivity is high and they are suitable for applications in aggressive media or at high temperatures. However, these properties are closely related to their microstructure, thus to their fabrication route. At CEA IRESNE, we develop fluorite based-potentiometric sensors for oxygen monitoring of advanced reactors coolants.
This thesis proposed to study the relation between the microstructure of two fluorite materials, doped hafnium or thorium oxides, and their behavior in liquid sodium or molten chlorides. The influence of grain size, density and impurity contents on the corrosion kinetic in sodium would provide insights on the corrosion mechanisms. The ultimate aim is to optimize the service life of these ceramics in oxygen sensors for sodium based energetics systems and to test them. The electrolyte will be used in sensors to characterize the behavior of oxygen in these complex media.
The student should be graduated in materials science. The thesis work will take place at the CEA/IRESNE Institute on the Cadarache site (France, Provence) in collaboration with the Institute of separative chemistry of Marcoule (France, Occitanie).

Stabilization of secondary phases in nanoreinforced ferritic steels: High-throughput screening approach of chemical compositions

Ferritic steels reinforced by oxide dispersion strengthening (ODS) are considered for use in 4th Generation and fusion nuclear reactors due to their excellent thermomechanical properties and stability under irradiation. However, these steels are weakened by secondary phases resulting from complex interactions between alloying elements and interstitials (C, N, O) introduced during their processing. Some alloying elements (such as Nb, V, Zr, Hf) could potentially stabilize these undesirable phases and mitigate their detrimental effects on the mechanical behavior of ODS steels. This thesis aims to develop a high-throughput screening method to identify optimal alloy compositions by combining rapid fabrication and characterization techniques. The PhD student will synthesize various compositions of ODS steels through powder metallurgy and carry out chemical, microstructural, and mechanical characterizations. This work will enhance the understanding of interstitial stabilization mechanisms and propose effective methodologies for characterizing new materials. The PhD student will gain in-depth knowledge in metallurgy and data processing, providing opportunities in industry, nuclear start-ups, and research.

Very high energy electrons radiotherapy with beams from a wakefield accelerator

Research objectives:
Use numerical modelling to optimize the properties of laser-plasma accelerators in the 50 MeV-200 MeV range for VHEE radiotherapy:
(i) optimize the properties of a laser-plasma accelerator (energy spread, divergence) with electron beams injected from a plasma-mirror injector using the WarpX and HiPACE++ codes.
(ii) Study the impact of such electron beams on DNA using Geant4DNA.

This numerical modelling will then be used to guide/design/interpret experiments of radiobiology on in-vitro biological samples that are planned at our in-house 100 TW laser facility at CEA during the project. This will be carried out in the context of research project FemtoDose funded by the French National Research Agency.

The researcher will benefit from a large variety of training available at CEA on HPC and computer programming as well as training at our industrial partners (ARM, Eviden) and Université Paris Saclay, which has MSc courses in radiobiology and also hosts a research centre (INanoTherad) dedicated to novel radiotherapy treatments, gathering physicists, radiobiologists and medical doctors. The activities will be carried out in the framework of the Marie Sklodowska Curie Action Doctoral Network EPACE (European compact accelerators, their applications, and entrepreneurship)

Top