Fast charging of lithium-ion batteries : Study of the lithium plating phenomenon using operando NMR

The focus of the thesis is the fast-charging process of lithium-ion batteries and, more specifically, the phenomenon of lithium plating, which will be studied using operando NMR. The target application is electric mobility. The objective of the thesis is to study the dynamics of lithium insertion and lithium metal deposition at the graphite or graphite/silicon-based negative electrode in order to understand the mechanisms leading to plating formation.
Operando NMR is an ideal technique for this study because it offers the unique possibility of simultaneously tracking the signals of the lithiated graphite phases and of deposited lithium during the electrochemical processes. The coupling of electrochemistry and operando NMR will allow us to determine the onset of plating, i.e. the potential of the negative electrode at which deposition begins, and the kinetics of lithium metal deposition and reinsertion at different temperatures and different charging current regimes. We will study Li-ion batteries with a pure graphite negative electrode, but also with graphite-silicon electrodes, in order to investigate the impact of silicon on this phenomenon. The data obtained on the onset mechanisms and the kinetics of lithium metal deposition and reinsertion will be used in a multiphysics model that has already been developed in the laboratory to improve the prediction of plating onset. We will then be able to evaluate the chargeability gains on an NMC 811 // Gr+Si system incorporating optimized electrodes and propose innovative charging protocols.

Exploration of VACNTs in Anode-less Batteries: Mechanism and Cell Optimization

Anode-less or anode-free batteries are getting increasing attention owing to their excellent energy density, cost efficiency, and ease of process upscaling. Exploring anode-less battery will offer a breakthrough in energy storage devices by using the lithium reserve already present in the NMC cathode to reversibly cycle after an initial formation process, which will reduce the overall thickness, processing steps, and cost of materials, and provide excellent energy density. Vertically aligned CNTs (VACNTs) on metal substrates can be an interesting choice for this application due to their low thickness, reproducible synthesis process, and uniform surface properties, which have already proven their applicability in supercapacitors. In this PhD project, we will investigate their newer avenue of applications- anode-less batteries, where VACNTs act as the lithium or sodium plating substrate. We will study the electrochemistry of VACNT in lithium anode-less batteries (in liquid and solid electrolytes) and in sodium anode-less batteries in a liquid electrolyte. The PhD student will work on the synthesis optimizations of VACNT to tune the thickness and density to match their electrochemistry. Post-cycling studies (Raman and SEM) will be carried out to study the effect of cycling and the electrolytes on the VACNT layers. The project aims to explore the possibility of the application of VACNTs in various energy storage systems, which can open up new application possibilities and valorization

Top