Sub-THz programmable electromagnetic surfaces based on phase change material switches
Spatiotemporal manipulation of the near- and far-electromagnetic (EM)-field distribution and its interaction with matter in the THz spectrum (0.1-0.6 THz) is of prime importance in the development of future communication, spectroscopy, imaging, holography, and sensing systems. Reconfigurable Intelligent (Meta)Surface (RIS) is a cutting-edge hybrid analogue/digital architecture capable of shaping and controlling the THz waves at the subwavelength scale. To democratize the RIS technology, it will be crucial to reduce its energy consumption by two orders of magnitude. However, the state-of-the-art does not address the integration, scalability, wideband and high-efficiency requirements.
Based on our recent research results, the main objective of this project will be to demonstrate novel silicon-based RIS architectures s at 140 GHz and 300 GHz. The enhancement of the THz RIS performance will derive from a careful choice of the silicon technology and, from novel wideband meta-atom designs (also called unit cell or element) with integrated switches based on PCM (phase change material). The possibility of dynamically controlling the amplitude of the transmission coefficients of the meta-atoms, besides their phase, will be also investigated. Near-field illumination will be introduced to obtain an ultra-low profile. To the best of our knowledge, this constitutes a new approach for the design of high-gain antennas in the sub-THz range.
EM Signature Modeling in Multi-path Scenario for Object Recognition and Semantic Radio SLAM
Context:
The vision for future communication networks includes providing highly accurate positioning and localization in both indoor and outdoor environments, alongside communication services (JCAS). With the widespread adoption of radar technologies, the concept of Simultaneous Localization and Mapping (SLAM) has recently been adapted for radiofrequency applications. Initial proof-of-concept demonstrations have been conducted in indoor environments, producing 2D maps based on mmWave/THz monostatic backscattered signals. These measurements enable the development of complex state models that detail the precise location, size, and orientation of target objects, as well as their electromagnetic properties and material composition.
Beyond simply reproducing maps, incorporating object recognition and positioning within the environment adds a semantic layer to these applications. While semantic SLAM has been explored with video-based technologies, its application to radiofrequency is still an emerging area of research. This approach requires precise electromagnetic models of object signatures and their interactions with the surrounding environment. Recent studies have developed iterative physical optics and equivalent current-based models to simulate the free-space multistatic signature of nearby objects.
PhD Thesis:
The objective of this thesis is to study and model object backscattering in a multi-path scenario for precise imaging and object recognition (including material properties). The work will involve developing a mathematical model for the backscattering of sensed objects in the environment, applying it to 3D SLAM, and achieving object recognition/classification. The model should capture both near- and far-field effects while accounting for the impact of the antenna on the overall radio channel. The study will support the joint design of antenna systems and the associated processing techniques (e.g., filtering and imaging) required for the application.
The PhD student will be hosted in the Antenna and Propagation Laboratory at CEA LETI in Grenoble, France. The research will be conducted in partnership with the University of Bologna.
Application:
The position is open to outstanding students with a Master of Science degree, “école d’ingénieur” diploma, or equivalent. The student should have a specialization in telecommunications, microwaves, and/or signal processing. The application must include a CV, cover letter, and academic transcripts for the last two years of study.
Enhanced Quantum-Radiofrequency Sensor
Through the Carnot SpectroRF exploratory project, CEA Leti is involved in radio-frequency sensor systems based on atomic optical spectroscopy. The idea behind the development is that these systems offer exceptional detection performance. These include high sensitivity´ (~nV.cm-1.Hz-0.5), very wide bandwidths (MHz- THz), wavelength-independent size (~cm) and no coupling with the environment. These advantages surpass the capabilities of conventional antenna-based receivers for RF signal detection.
The aim of this thesis is to investigate a hybrid approach to the reception of radio-frequency signals, combining atomic spectroscopy measurement based on Rydberg atoms with the design of a close environment based on metal and/or charged material for shaping and local amplification of the field, whether through the use of resonant or non-resonant structures, or focusing structures.
In this work, the main scientific question is to determine the opportunities and limits of this type of approach, by analytically formulating the field limits that can be imposed on Rydberg atoms, whether in absolute value, frequency or space, for a given structure. The analytical approach will be complemented by EM simulations to design and model the structure associated with the optical atomic spectroscopy bench. Final characterization will be based on measurements in a controlled electromagnetic environment (anechoic chamber).
The results obtained will enable a model-measurement comparison to be made. Analytical modelling and the resulting theoretical limits will give rise to publications on subjects that have not yet been investigated in the state of the art. The structures developed as part of this thesis may be the subject of patents directly exploitable by CEA.
Super-gain miniature antennas with circular polarization and electronic beam steering
Antenna radiation control in terms of shape and polarization is a key element for future communication systems. Directive compact antennas offer new opportunities for wireless applications in terms of spatial selectivity and filtering. This leads to a reduction in electromagnetic pollution by mitigating interferences with other communication systems and reducing battery consumption in compact smart devices (IoT), while enabling also new use modes. However, the conventional techniques for enhancing the directivity often lead to a significant increase of the antenna size. Consequently, the integration of directional antennas in small wireless devices is limited. This difficulty is particularly critical for the frequency bands below 3 GHz if object dimensions are limited to a few centimeters. Super directive/gain compact antennas with beam-steering capabilities and operating on a wideband or on multi-bands are an innovative and attractive solution for the development of new applications in the field of the connected objects. In fact, the possibility to control electronically the antenna radiation properties is an important characteristic for the development of the future generation and smart communication systems. CEA Leti has a very strong expertise in the domain of superdirective antennas demonstrating the potentials of the use of ultra-compact parasitic antenna arrays. This PhD project will take place at CEA Leti Grenoble in the antennas and propagation laboratory (LAPCI). The main objectives of this work are: i) contribution to development of numerical tools for the design and optimization of superdirective compact arrays with beam-steering capabilities; ii) the study of new elementary sources for compact antenna arrays; iii) the realization and experimental characterization of a supergain compact array with circular polarization and beam-steering capabilities. This work will combine theoretical studies and model developments, antenna design using 3D electromagnetic software, prototyping and experimentations.
Microwave Near Field Sensing in Heterogeneous Media
This thesis focuses on the development of microwave near-field sensing techniques for applications in biomedicine, agronomy, and geophysics. The primary objective is to design low-complexity algorithms that effectively solve complex inverse problems related to the characterization and detection of dielectric properties with various geometric distributions in heterogeneous media.
The candidate will begin by conducting a comprehensive review of existing radar-based and advanced signal processing methods. A precise physical model of microwave propagation in near-field conditions will be developed, serving as the foundation for new detection methods based on the concept of physics-driven iterative tomography. The ultimate goal is to formulate efficient algorithms suitable for real-time applications and validate them through experimental implementation. To achieve this, an evolving prototype setup will be developed, progressing from 2D media to more complex 3D scenarios.
This interdisciplinary project combines physical modeling, algorithm development, and practical experimentation. It presents an opportunity to advance the field of microwave imaging, with significant implications for biomedical and environmental applications.
Multiphysical modeling of a dual-frequency induction-heated metallothermic reactor
The recycling of uranium extracted from spent fuel (reprocessed uranium or URT) is of major strategic interest as regards both closure and economics of the cycle as well as for national sovereignty. France has initiated the development of a reprocessing route for this URT, involving an entire production chain relying on SILVA laser enrichment technology.
In this context, the CEA is in charge of developing all the processes in this chain, in particular the steps involved in the conversion of uranium oxide into uranium metal required for laser enrichment. For this purpose, the “Laboratoire d'étude des technologies Numériques et des Procédés Avancés” (LNPA) is studying the transposition of the historical metallothermy process to a cold crucible type reactor. This dual-frequency inductive furnace is designed to melt a two-phase charge consisting of a fluorinated slag and a metal produced in situ by the metallothermic reaction.
Alongside a multi-year technology development program on reduced-scale inactive pilot plants, numerical modeling studies of the reactor are undertaken in order to consolidate the change in working scale and enable system parameters to be optimized before deployment of the technology in active operation on depleted uranium for validation tests. The aim of the proposed thesis work is to develop the magneto-thermo-hydraulic (MTH) multiphysical model of the cold crucible metallothermic furnace.