Bayesian Neural Networks with Ferroelectric Memory Field-Effect Transistors (FeMFETs)
Artificial Intelligence (AI) increasingly powers safety-critical systems that demand robust, energy-efficient computation, often in environments marked by data scarcity and uncertainty. However, conventional AI approaches struggle to quantify confidence in their predictions, making them prone to unreliable or unsafe decisions.
This thesis contributes to the emerging field of Bayesian electronics, which exploits the intrinsic randomness of novel nanodevices to perform on-device Bayesian computation. By directly encoding probability distributions at the hardware level, these devices naturally enable uncertainty estimation while reducing computational overhead compared to traditional deterministic architectures.
Previous studies have demonstrated the promise of memristors for Bayesian inference. However, their limited endurance and high programming energy pose significant obstacles for on-chip learning applications.
This thesis proposes the use of ferroelectric memory field-effect transistors (FeMFETs)—which offer nondestructive readout and high endurance—as a promising alternative for implementing Bayesian neural networks.
Development and Characterization of Terahertz Source Matrices Co-integrated in Silicon and III-V Photonics Technology
The terahertz (THz) range (0.1–10 THz) is increasingly exploited for imaging and spectroscopy (e.g. security scanning, medical diagnostics, non-destructive testing) because many materials are transparent to THz radiation and have unique spectral signatures. However, existing sources struggle to offer both high power and wide tunability: electronic sources (diodes, QCLs) deliver milliwatts but over narrow bands, while photonic emitters (photomixers in III–V semiconductors) are tunable across broad bands but emit only microwatts. This thesis aims to overcome these limitations by developing an integrated matrix of THz sources. The approach is based on photomixing two 1.55 µm lasers in III–V photodiodes to generate a phase-coherent THz current coupled to THz antennas.
Initially, the PhD student will experimentally investigate an existing 16-element THz antenna array (STYX project) CEA-CTReg/DNAQ: setting up the test bench, measuring phase coherence, optical coupling, radiation lobes, and constructive interference. These experiments will provide a scientific foundation for the subsequent design of an integrated photonic array on silicon. The student will simulate the photonic architecture (couplers, waveguides, phase modulators, Si/III–V transitions) synchronizing multiple InGaAs photodiodes. Prototyping will include the fabrication of silicon photonic circuits (CEA-LETI) and THz photodiodes/antennas in InP (III-V Lab or, to be confirmed, Heinrich-Hertz-Institut of the Fraunhofer—HHI), followed by their hybrid integration (bonding, alignment).
This thesis will also rely on close collaboration with the IMS laboratory (Bordeaux), which is nationally and internationally recognized for its expertise in silicon photonics and THz systems. IMS will provide complementary expertise in optical modeling, electromagnetic simulation, and experimental characterization, reinforcing the multidisciplinary strength of the project.
Finally, the ultimate goal of this thesis is to develop a proof-of-concept demonstrator with a few phase-locked THz emitters (e.g. 4–16) will be produced and characterized, showing enhanced beam directivity and output power thanks to constructive interference. This demonstration will pave the way for large-scale THz source arrays with significantly improved range and penetration for advanced THz imaging systems.