Multiscale modelling of twinning in tin

Twinning is a displacive deformation mechanism characterized by a continuous deformation of the material. Although widely studied for other industrial materials such as titanium alloys, this inelastic mechanism remains poorly understood and incompletely modeled for complex crystallographic structures. However, due to the reduced number of symmetries in these structures, dislocation slip is insufficient to accommodate deformation in certain loading directions, requiring the activation of twinning. This is the case for tin, which has a tetragonal structure. In particular, twinning contributes significantly to the mechanical response of tin at high strain rates and low temperatures. At intermediate temperatures and strain rates, a competition between dislocation plasticity and twinning plasticity can occur, making it crucial to describe the coupling between these two phenomena. Proposing a better description of this coupling will shed new light on the experimental data available at CEA DAM. The objective of the thesis is to develop a multiscale approach, from molecular dynamics to continuum mechanics, validated by experiments, to converge on a model that describes the behavior of tin over a wide range of temperatures and strain rates.

Development of injectable adhesive hydrogels for the treatment of retinal tears

Retinal tears then detachment, a serious eye condition (20–25 cases per 100,000 in France each year), requires urgent surgery. Current treatments involve removing the vitreous, using gas as a tamponade agent, and sealing tears with laser. However, this method presents drawbacks, including patient restrictions (e.g., prolonged lying down) and complications (e.g., cataracts). Injectable hydrogels are being explored as alternative tamponade agents, but they do not display adhesive properties to suture the tears and laser treatment is still required. Surgical glues have also been tested, but cyanoacrylate-based adhesives are toxic, fibrin-based sealants are hard to use in the eye, and current hyaluronan (HA)-based materials lack sufficient stability and adhesion.
This PhD project aims to develop a sterile, injectable HA-based hydrogel with strong adhesive properties to seal retinal tears. Key requirements include biocompatibility, injectability (30G needle), tissue adhesiveness (1.5–3.7 N), and rapid delivery (within 1 hour). Our group has previously developed an injectable HA hydrogel with dynamic crosslinking, offering long-term stability, biocompatibility, and optical transparency. To confer it with tissue-adhesion properties, two strategies will be tested: (1) addition of tissue-adhesive tannic acid in the hydrogel formulation, or (2) grafting tissue-adhesive groups onto the HA backbone. The hydrogel will be tested for its biocompatibility and adhesiveness in preclinical eye models.
This innovative hydrogel could simplify retinal surgery, reduce complications, lower costs, and improve recovery. Beyond retinal repair, it may have applications in cornea surgery and other medical fields.

Implementation of TFHE on RISC-V based embedded systems

Fully Homomorphic Encryption (FHE) is a technology that allows computations to be performed directly on encrypted data, meaning that we can process information without ever knowing its actual content. For example, it could enable online searches where the server never sees what you are looking for, or AI inference tasks on private data that remain fully confidential. Despite its potential, current FHE implementations remain computationally intensive and require substantial processing power, typically relying on high-end CPUs or GPUs with significant energy consumption. In particular, the bootstrapping operation represents a major performance bottleneck that prevents large-scale adoption. Existing CPU-based FHE implementations can take over 20 seconds on standard x86 architectures, while custom ASIC solutions, although faster, are prohibitively expensive, often exceeding 150 mm² in silicon area. This PhD project aims to accelerate the TFHE scheme, a more lightweight and efficient variant of FHE. The objective is to design and prototype innovative implementations of TFHE on RISC-V–based systems, targeting a significant reduction in bootstrapping latency. The research will explore synergies between hardware acceleration techniques developed for post-quantum cryptography and those applicable to TFHE, as well as tightly coupled acceleration approaches between RISC-V cores and dedicated accelerators. Finally, the project will investigate the potential for integrating a fully homomorphic computation domain directly within the processor’s instruction set architecture (ISA).

Study of Zn, Cr, Fe, Ni synergies on crystallisation in simplified glasses of nuclear interest

In France, nuclear power-plants used for electricity production generate high-level long-lived radioactive wastes through spent fuel reprocessing. These wastes are confined within a borosilicate glass matrix, whose structure allows for the incorporation at the atomic scale of a large number of elements, and which displays excellent long-term properties. The industry challenges are leading to changes in the nuclear fuel composition, which can thus induce a modification of the spent-fuel composition to be vitrified.
Chromium is as such an element of interest: its relatively low solubility in borosilicate glasses as well as its tendency to crystallise with other elements, such as iron, nickel and zinc, needs to be further investigated. This thesis aims to study the synergetic effect of Cr, Ni, Fe and Zn on crystallisation in simplified peralkaline glasses of nuclear interest in order to better comprehend affinities between these elements, thus identifying both the nature and quantity of the several crystalline phases which may form.
The PhD student will benefit from the recognised skills of the host laboratory in glass formulation as well as the study of their physico-chemical properties. All of the resources made available will enable a global approach to the subject, working on a fast-growing topic with major industrial and societal implications. The experience acquired during this interdisciplinary work will be useful in the field of materials.

TRANSIENT LIQUID PHASE SINTERING OF UOX AND MOX FUEL PELLETS

The subject is related to the manufacture of UOX and MOX fuels. The main objective is to identify dopant pairs that allow the formation of a transient liquid phase during the fuel sintering step. For this, phase diagram calculations using the CALPHAD method will have to be carried out, also taking into account the requirements related to the irradiation phase once the fuel is loaded into the reactor. The most promising pairs will then be evaluated in the context of the manufacture of a UOX fuel and a MOX fuel. The experiments to be carried out will essentially be: the preparation of a powdery material, the shaping by pressing of this material in the form of cylinders representative of fuel pellets and the study of the high-temperature sintering of these UOX and MOX formulation cylinders. After sintering, a very important step will be the characterization at the macroscopic and microscopic scales of these pellets. The first year of the thesis will take place at the CEA center in Cadarache. The next two will take place at the CEA site in Marcoule. The first year of the PhD will take place at the CEA Cadarache center within the ICPE Uranium Fuel Laboratory. The following two years will be spent at the INB Atalante facility on the CEA Marcoule site. The candidate will work in two facilities unique in Europe and will be able to develop experience working in a nuclear environment with a highly innovative approach that will lead to the publication of original scientific results.

Study of new concepts for miniaturizable and parallelizable liquid-liquid extractors

In the process of developing procedures, their miniaturization represents a major challenge for upstream research and development (R&D). Indeed, the miniaturization of procedures offers numerous advantages in terms of reducing the volume of raw materials, waste management, screening possibilities, automation, and safety for personnel.
To date, the counter-current liquid-liquid extraction process does not have a convincing miniaturization solution, although the applications are numerous: in pharmacy, chemical synthesis, nuclear, or nuclear medicine.
The CEA-ISEC in Marcoule has developed new microfluidic tools to perform these operations in a simple and operational manner, based on a fine understanding of the instabilities of two-phase flows in capillaries.
This 3-year study topic proposes:
- To experiment, understand, and finely model the flows and mass transfers;
- To optimize and then transpose the phenomena to industrially significant volumes;
- To publish and participate in international conferences.
The doctoral student will benefit from learning about the world of research in a team that values quality in the supervision and future of its doctoral students, in a multidisciplinary team ranging from process engineering to instrumentation, with projects ranging from research to industry.
General competencies in chemical engineering and mass transfer are required. Competencies in collaborating with our academic partners will be essential to the success of the study project.

Learning to focus: Physics-Informed Deep Learning for Super-Resolved Ultrasonic Phased-Array Imaging

This PhD aims to develop a new class of ultrasonic focusing methods for phased-array imaging by combining deep learning, physics-based modeling, and optimal transport theory. The first research axis introduces a reweighted, probabilistic extension of the Total Focusing Method (TFM), where per-isochrone focusing weights are iteratively estimated by a shared convolutional network and normalized using a neural time-of-flight field. This iterative, differentiable framework enables more adaptive, interpretable, and robust imaging in heterogeneous or uncertain media.

The second axis proposes a full reformulation of TFM as a Wasserstein barycenter problem, in which each partial image is modeled as an empirical distribution in a joint space of spatial coordinates and ultrasonic amplitude. A physically meaningful transport cost, based on geodesic distances that minimize time-of-flight variations with respect to selected emitters, encodes the acoustic geometry directly in the metric. The resulting grid-free barycenters yield sharp, physically consistent reflector localization and open new opportunities at the interface between optimal transport and ultrasonic phased-array imaging. Overall, the thesis aims to merge physics, machine learning, and geometric optimal transport to formulate next-generation reconstruction methods for ultrasonic imaging.

Optical intradermal sensing via instrumented microneedles

Cortisol plays a central role in regulating the circadian cycle and in many essential physiological processes such as energy metabolism and immune response. Conventional monitoring of cortisol relies on single blood or saliva samples, which do not accurately reflect the temporal dynamics of its secretion. It is therefore necessary to develop innovative approaches that enable continuous, minimally invasive, and reliable measurement of cortisol concentration in patients.
The doctoral project aims to develop an original optical instrumentation system coupled with microneedles functionalized with fluorescent aptamers for continuous, minimally invasive intradermal monitoring of cortisol without the need for sampling. Within this framework, the PhD candidate will be responsible for designing and sizing the future optical microneedles intended for cortisol detection. They will set up the experimental systems required to characterize the optical microneedles fabricated within the department and test their performance in a representative environment. Finally, the PhD candidate will develop a comprehensive data processing and analysis methodology to identify the key parameters that establish a quantitative relationship between the collected signals and cortisol concentration. Altogether, this work will contribute to the development of an innovative measurement device based on cutting-edge optical emission and detection technologies available at CEA Leti, combining precision, sensitivity, compactness, and thus compatibility with in situ use.

INFLUENCE OF THE DRY GRANULATION ON THE MANUFACTURING OF SFR MOX FUELS

The subject is related to the manufacture of MOX U,Pu)O2 fuel for Fast Neutron Reactors. The current process integrates a co-grinding step of uranium and plutonium dioxides to generate a powder medium which is then shaped by uniaxial pressing to generate cylindrical fuel pellets which are then sintered at high temperature. The collected powder medium has poor flowability which limits the rates of shaping by pressing. The objective of the thesis is therefore to evaluate the impact of mechanical granulation of the powder medium on the flowability, the pressing step and the microstructure obtained after sintering. Dissolution tests in nitric acid will also be carried out on certain very specific microstructures. The thesis will be based on a formal experimental plan developed using specific software (JMP). The PhD will take place at the INB Atalante facility on the CEA Marcoule site. The candidate will work in a unique facility in Europe and will be able to develop expertise in working in a nuclear environment with a highly innovative approach that will lead to the publication of original scientific results.

Mechanical degradation of Solid Oxide Cells: impact of operating and failure modes on the performances

Solid oxide cells (SOCs) are electrochemical devices operating at high temperature that can directly convert fuel into electricity (fuel cell mode – SOFC) or electricity into fuel (electrolysis mode – SOEC). In recent years, the interest on SOCs has grown significantly thanks to their wide range of technological applications that could offer innovative solutions for the transition toward a renewable energy market. However, despite of all their advantages, the large-scale industrialization of this technology is still hindered by the durability of SOCs. Indeed, the SOCs remain limited by various degradation phenomena including mechanical damage in the electrodes. For instance, the formation of micro-cracks in the so-called ‘hydrogen’ electrode is a major source of degradation. However, the precise mechanism and the full impact of the micro-cracks on the electrode performances are still unknown. By a multi-physic modelling approach, it is proposed in this thesis (i) to simulate the damage in the microstructure of the electrode and (ii) to calculate its impact on the loss of performances. Once the model validated on dedicated experiments, a sensitivity analysis will be conducted to provide relevant guidelines for the manufacturing of improved robust and performant electrodes.

Top