Control & optimization of fuel cell temperature

Proton exchange membrane fuel cells (PEMFC) represent a key technology for the development of clean and sustainable energy systems, particularly for heavy-duty transport applications where their energy density is very attractive. However, in order to represent a viable industrial alternative, a number of obstacles still need to be overcome, including operating costs and, above all, the durability of the systems under real-world conditions. Among the levers for action, optimizing operating conditions is a promising avenue for limiting the degradation phenomena occurring within the cell. The operating temperature is a particularly key parameter because it affects all aspects of the system, from the kinetics of degradation mechanisms to the thermal capacity that the system can dissipate, including the water balance within the fuel cell. Despite the influence of this parameter on durability, it is generally only optimized at the system level to achieve the best performance, the shortest possible response time and to limit the size of the thermal management system.
The aim of this thesis is to work on optimizing the temperature management of a fuel cell within a system, taking into account not only performance but also sustainability criteria. To do this, the impact of operating temperature on degradation mechanisms will be analyzed using various simulation tools already available at LITEN and the teams' fifteen years of experience in studying PEMFC fuel cell degradation. Various thermal architectures will be proposed and evaluated in conjunction with the work on temperature control optimization. The latter will be implemented on a real fuel cell system in order to demonstrate the relevance of the proposed solution using concrete experimental data.

Innovative techniques for evaluating critical steps and limiting factors for batteries formation

The battery manufacturing sector in Europe is currently experiencing strong growth. The electrical formation step that follows battery assembly and precedes delivery has received little academic attention, despite being crucial for battery performance (lifespan, internal resistance, defects, etc.). It is an essential time-consuming and costly step in the process (>30% of the cell manufacturing cost, and 25% of the equipment cost in a Gigafactory) that would greatly benefit from optimization.
In this thesis, we propose studying battery formation using innovative, complementary, operando non-intrusive techniques. The goal is to identify the limiting mechanisms of the electrolyte impregnation step (filling electrode pores) and of the initial charge. The candidate will implement experimental methods to monitor and analyze these mechanisms. He will also establish a methodology and protocols for studying these steps, combining electrochemical measurements with non-intrusive physical characterizations under operating conditions. The research will focus on optimizing formation time and quality control during this stage.

From angstroms to microns: a nuclear fuel microstructure evolution model whose parameters are calculated at the atomic scale

Controlling the behavior of fission gases in nuclear fuel (uranium oxide) is an important industrial issue, as fission gas release or precipitation limit the use of fuels at extended burn-ups. The gas behavior is strongly influenced by the material’s microstructure evolution due to the aggregation of irradiation-induced defects (gas bubbles, dislocation loops and lines). Cluster dynamics (CD) (a kind of rate theory model) is relevant for modelling the nucleation/growth of the defect clusters, there gas content and the gas release. The current model has been parameterized following a multiscale approach, based on atomistic calculations (ab initio or empirical potentials). This model has been successfully applied to annealing experiments of UO2 samples implanted with rare gas atoms and has emphasized the impact of the irradiation damage on gas release. The aim of this PhD thesis is now to improve the model, particularly the damage parameterization, and to extend its validation domain through in depth comparison of simulation with a large set of recently obtained experimental results, such as gas release measurement by annealing of sample implanted in ion beam accelerator, bubble and loop observation by transmission electrons microscopy of implanted or in-pile irradiated samples. This global analysis will finally yield an improved parameterization of the CD model.
The research subject combines a “theoretical” dimension (improving the model) with an “experimental” one (interpreting existing experiments or designing some new ones). The variety of techniques will introduce you into the experimental world and thus broaden your scientific skills. You will be welcomed at the Fuel Behavior Modeling Laboratory (part of the Institute for Research on Nuclear Systems for Low-Carbon Energy Production, IRESNE, CEA Cadarache), where you will benefit from an open environment rich in academic collaborations. You also have to manage collaborations for the experiments analysis, for the model development and for the specification of additional atomistic calculations. You will be at the interface of atomistic techniques, large-scale simulation and various experimental techniques. Therefore, You will develop a broad view of irradiation effects in materials and of multi-scale modelling in solids in general.
This project is an opportunity to contribute to the overall development of numerical physics applied to multi-scale modeling of materials, occupying a pivotal position and adopting a global viewpoint. This will allow experiencing yourself the way computed fundamental microscopic data finally helps solving complex practical issues.

Further readings:
Skorek et al. (2012). Modelling Fission Gas Bubble Distribution in UO2. Defect and Diffusion Forum, 323–325, 209.
Bertolus et al. (2015). Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. Journal of Nuclear Materials, 462, 475–495.

In situ and real-time characterization of nanomaterials by plasma spectroscopy

The objective of this Phd is to develop an experimental device to perform in situ and real time elemental analysis of nanoparticles during their synthesis (by laser pyrolysis or flame spray pyrolysis). Laser-Induced Breakdown Spectroscopy (LIBS) will be used to identify the different elements present and their stoichiometry.
Preliminary experiments conducted at LEDNA have shown the feasibility of such a project and in particular the acquisition of a LIBS spectrum of a single nanoparticle. Nevertheless, the experimental device must be developed and improved in order to obtain a better signal to noise ratio, to increase the detection limit, to take into account the different effects on the spectrum (effect of nanoparticle size, complex composition or structure), to automatically identify and quantify the elements present.
In parallel, other information can be sought (via other optical techniques) such as the density of nanoparticles, the size or shape distribution.

Numerical and experimental study of cryogenic refrigeration system for HTS-based nuclear fusion reactors

The challenge of climate change and the promise of CO2-free energy production are driving the development of new nuclear fusion reactor concepts that differ significantly from systems such as ITER or JT60-SA [R1]. These new fusion reactors push the technological boundaries by reducing investment and operating costs through the use of high-temperature magnets (HTS) to confine the plasma [R4]. These HTS promise to achieve high-intensity magnetic fields while operating at higher cooling temperatures, thereby reducing the complexity of cryogenic cooling, which is normally achieved by forced circulation of supercritical helium at approximately 4.5 K (see 1.8 K for WEST/Tore Supra) delivered by a dedicated cryogenic plant.

The pulsed operation of tokamaks induces a temporal variation in the thermal load absorbed by the cooling system. This operating scenario has led to the development of several load smoothing techniques to reduce the amplitude of these thermal load variations, thereby reducing the size and power of the cooling system, with beneficial effects on cost and environmental impact. These techniques use liquid helium baths (at approximately 4 K) to absorb and temporarily store some of the thermal energy released by the plasma pulse before transferring it to the cryogenic installation [R5].

The objective of this thesis is to contribute to the development of innovative concepts for the refrigeration of large HTS systems at temperatures between 5 and 20 K. It will include (1) the modeling of cryogenic system and cryodistribution architectures as a function of the heat transfer fluid temperature, and (2) the exploration of innovative load smoothing techniques in collaboration with the multidisciplinary "Fusion Plant" team of the PEPR SUPRAFUSION project. The first part will involve the development and improvement of 0D/1D numerical tools called Simcryogenics, based on Matlab/Simscape [R6], through the implementation of physical models (closure laws) and the selection of appropriate modeling techniques to analyze and compare suitable architectural solutions. The second part will be experimental and will involve conducting load smoothing experiments using an existing cryogenic loop operating between 8 and 15 K.

This activity will be at the forefront of the nuclear fusion revolution currently underway in Europe [R3, R7] and the United States [R4], addressing a wide range of cryogenic engineering fields such as refrigeration technologies, superfluid helium, thermo-hydraulics, materials properties, system and subsystem design, and the design and execution of cryogenic tests. It will thus be useful for the development of new generations of particle accelerators using HTS magnets.

[R1] Cryogenic requirements for the JT-60SA Tokamak https://doi.org/10.1063/1.4706907]
[R2] Analysis of Cryogenic Cooling of Toroidal Field Magnets for Nuclear Fusion Reactorshttps://hdl.handle.net/1721.1/144277
[R3] https://tokamakenergy.com/our-fusion-energy-and-hts-technology/fusion-energy-technology/
[R4] https://tokamakenergy.com/our-fusion-energy-and-hts-technology/hts-business/
[R5] “Forced flow cryogenic cooling in fusion devices: A review” https://doi.org/10.1016/j.heliyon.2021.e06053
[R6] “Simcryogenics: a Library to Simulate and Optimize Cryoplant and Cryodistribution Dynamics”, 10.1088/1757-899X/755/1/012076
[R7] https://renfusion.eu/
[R8] PEPR Suprafusion https://suprafusion.fr/

Differential phase contrast imaging based on quad-pixel image sensor

Biopharmaceutical production is booming and consists of using cells to produce molecules of interest. To achieve this, monitoring the culture and the state of the cells is essential. Quantitative phase imaging by holography is a label-free optical method that has already demonstrated its ability to measure the concentration and viability of cultured cells. However, implementing this technique in a bioreactor faces several challenges related to the high cell density. It is therefore necessary to develop new quantitative phase imaging methods, such as differential phase contrast imaging.

The objective of the PhD is to develop this technique using a specific image sensor for which a prototype has been designed at CEA-LETI. The PhD candidate will use this new sensor and develop the reconstruction and image-processing algorithms. They will also identify the limitations of the current prototype and define the specifications for a second prototype that will be developed at CEA-LETI. Finally, they will consider the design of an inline probe to be immersed in the bioreactor.

Study of the behaviour of mixed oxide fuels with degrade isotopy at the beginning of life.

France has decided to adopt a 'closed' nuclear fuel cycle. This involves processing spent fuel to recover valuable materials such as uranium and plutonium, while other compounds such as fission products and minor actinides constitute final waste. UO2 fuel irradiated in pressurised water reactors (PWRs) is currently reprocessed to produce plutonium (PuO2), which is then reused in the form of mixed oxide (MOX) fuel. This fuel is then irradiated in PWRs, a process known as plutonium monorecycling. The CEA is currently studying the multi-recycling of materials using fuels containing Pu from the processing of spent MOX assemblies. However, this multi-recycled plutonium contains a higher proportion of highly alpha-active isotopes (Pu238, Pu240 and Pu241/Am241), resulting in more severe alpha self-irradiation than current MOX fuels experience [1]. This exacerbates certain physical phenomena [2-5], such as fuel swelling due to helium precipitation and the creation of crystal defects and decreased thermal conductivity [6-8], which can alter its behaviour in the reactor.
The proposed thesis will study the impact of these phenomena on the behaviour of MOX fuels at the beginning of the irradiation, using a combination of experimentation and modelling. Heat treatments will be employed to analyse the mechanisms of crystal defect healing and helium behaviour. Various experimental techniques will be employed to characterise the structure and microstructure (X-ray diffraction, scanning electron microscopy (SEM), Raman spectroscopy and microprobe analysis), defect densities (transmission electron microscopy (TEM)), helium release (KEMS), thermal gradient reproduction (CLASH laser) and thermal conductivity (LAF laser). The results will inform simulations modelling the microstructure and thermal properties.
This cross-disciplinary study will improve our understanding of the phenomena involved in the initial power-up of fuels damaged by alpha self-irradiation, particularly the impact of helium produced by decay.

You will be based at the Multi-Fuel Design and Irradiation Laboratory (LECIM) within the Research Institute for Nuclear Systems for Low-Carbon Energy Production at CEA/Cadarache. For the experimental part of the project, you will collaborate with the Chemical Analysis and Materials Characterisation Laboratory (LMAT) at CEA/Marcoule and the European Research Centre (JRC) in Karlsruhe. You will have the opportunity to publish your results through scientific publications and conference presentations. This role offers the chance to develop your expertise in a variety of techniques that can be applied across multiple fields of materials science and engineering.

[1]O. Kahraman, thésis, 2023.[2]M. Kato et al., J Nucl Mater, 393 (2009) 134–140.[3]L. Cognini et al., Nuclear Engineering and Design 340 (2018) 240–244.[4] T. Wiss et al., Journal of Materials Research 30 (2015) 1544–1554.[5]D. Staicu et al., J Nucl Mater 397 (2010) 8–18.[6] T. Wiss et al.,Front. Nucl. Eng. 4 (2025) 1495360.[7]E.P. Wigner, J. Appl. Phys. 17 (1946) 857–863.[8]D. Staicu et al., Nuclear Materials and Energy 3–4 (2015) 6–11.

Parallel simulation and adaptive mesh refinement for 3D solids mechanics problems

The challenge of this PhD thesis is to implement adaptive mesh refinement methods for non-linear 3D solids mechanics adapted to parallel computers.

This research topic is proposed as part of the NumPEx (Digital for Exascale) Priority Research Programs and Equipment (PEPR). It is part of the Exa-MA (Methods and Algorithms for Exascale) Targeted Project. The PhD will take place at CEA Cadarache, within the Institute for Research on Nuclear Energy Systems for Low-Carbon Energy Production (IRESNE), as part of the PLEIADES software platform development team, which specializes in fuel behavior simulation and multi-scale numerical methods.

In finite element simulation, adaptive mesh refinement (AMR) has become an essential tool for performing accurate calculations with a controlled number of unknowns. The phenomena to be taken into account, particularly in solids mechanics, are often complex and non-linear: contact between deformable solids, viscoplastic behaviour, cracking, etc. Furthermore, these phenomena require intrinsically 3D modelling. Thus, the number of unknowns to be taken into account requires the use of parallel solvers. One of the current computational challenges is therefore to combine adaptive mesh refinement methods and nonlinear solid mechanics for deployment on parallel computers.

The first research topic of this PhD thesis concerns the development of a local mesh refinement method (of block-structured type) for non-linear mechanics, with dynamic mesh adaptation. We will therefore focus on projection operators to obtain an accurate dynamic AMR solution during the evolution of refined areas.

The other area of research will focus on the effective treatment of contact between deformable solids in a parallel environment. This will involve extending previous work, which was limited to matching contact meshes, to the case of arbitrary contact geometries (node-to-surface algorithm).

The preferred development environment will be the MFEM tool. Finite element management and dynamic re-evaluation of adaptive meshes require assessing (and probably improving) the efficiency of the data structures involved. Large 3D calculations will be performed on national supercomputers using thousands of computing cores.
his will ensure that the solutions implemented can be scaled up to tens of thousands of cores.

Modeling of a non-equilibrium dispersed phase and its fragmentation

In the context of the sustainable use of nuclear energy to produce carbon-free electricity, fourth-generation reactors, also known as "fast neutron" reactors, are necessary to close the fuel cycle.
This thesis falls within the framework of safety studies associated with such sodium-cooled reactors, and more particularly the hypothetical situation of a molten core relocating by gravity towards the core catcher at the bottom of the reactor vessel. A jet of corium (mixture of molten fuel and structural elements of the core) then interacts violently with the coolant, inducing, among other things, the fragmentation of the corium jet into droplets coupled with film boiling of the coolant. Characteristics of the resulting dispersed phase of corium and its fragmentation are crucial for studying the risk of runaway and steam explosion.
The aim of this thesis is to model a dispersed phase and its fragmentation in a surrounding fluid, using an approach that is both efficient and able to account to the scale variations and thermal imbalances between the droplets and the carrier phase. The method considered to meet these objectives is the method of moments, which derives from a kinetic model. It requires adequate closure and numerical schemes that satisfy non-standard constraints, while offering, in return, a crucial cost/accuracy compromise in the context studied. The advancements will be a priori implemented in the CFD software SCONE, built on the CEA's open-source TRUST platform.
The main work location will be based at the LMAG (Laboratory of Severe Accidents Modeling) at the IRESNE Institute of CEA Cadarache. Part of the work will also be carried out at the EM2C Laboratory (Molecular and Macroscopic Energetics, Combustion) – CNRS/CentraleSupélec in Paris.
The future PhD will work in a scientific dynamic environment and will acquire skills enabling to aspire to academic and industrial R&D positions.

Keywords : Dispersed Phase, Fragmentation, Kinetic, Method of Moments, Multiphase, Numerical methods, Severe Accidents.

Development of manganese-doped uranium oxide fuel: sintering mechanisms and microstructural changes

This PhD project focuses on developing nuclear fuels with improved properties through the addition of a dopant, for use in pressurized water reactors.
In nuclear reactors, the fuel consists of uranium dioxide (UO2) pellets stacked inside zirconium alloy cladding. These pellets, in contact with the cladding, must withstand extreme conditions of temperature and pressure. One of the challenges is to limit chemical interactions that may occur during the migration of fission products from the center to the periphery of the pellet and with the cladding. A notable example of such a phenomenon is the stress corrosion assisted by iodine, which can occur during accidental transients.
One strategy is to dope the UO2 ceramic with a metal oxide in order to control the material’s microstructure and also to modify its thermochemical behavior, thereby limiting both the mobility and corrosive nature of fission gases. Among the possible dopants, manganese oxide (MnO) represents a promising option and a potential alternative to chromium oxide (Cr2O3), which is currently a mature solution for the industry.
This PhD will explore the role of manganese in the sintering of UO2, particularly the microstructure and final properties of the fuel. The work will take place at the CEA Cadarache center, within the Institute for research on nuclear systems for low-carbon energy production (IRESNE).
During these three years, you will be hosted in the Laboratory for the study of uranium-based fuels (LCU) within the fuel study department (DEC), in close connection with the Laboratory for fuel behavior modeling (LM2C).
This research, combining experimentation and modeling, will be structured around three main topics:
• Study of the influence of manufacturing conditions on the microstructure of Mn-doped UO2,
• Investigation of the impact of doping on defect formation in UO2 and the associated properties,
• the contribution to the thermodynamic modelling of the system, based on experimental tests.
During this PhD, you will gain solid experience in the fabrication and advanced characterization of innovative materials, particularly in the field of ceramics for the nuclear industry. Your work could lead to publications, patents, and participation in national and international conferences.
You will also acquire numerous technical skills applicable across various research and industrial fields, including energy, microelectronics, chemical and pharmaceutical industries.

Top