Towards a new iterative approach for the efficient modeling of mechanical contact
As part of the modeling and simulation of nuclear fuel behavior across different reactor types, the Institute for Research on Nuclear Energy Systems for Low-Carbon Energy Production (IRESNE) at CEA Cadarache, in partnership with various industrial and academic stakeholders, is developing the PLEIADES software platform for fuel behavior simulation. In this context, the interaction between the fuel and its cladding, the first containment barrier, is a key phenomenon for understanding and predicting the behavior of fuel elements.
The modeling and numerical simulation of mechanical contact phenomena represent a major scientific and technological challenge in solid mechanics, due to the intrinsic complexity of the problem, characterized by its highly nonlinear and non-smooth nature.
To overcome the limitations of classical approaches, such as the penalty or Lagrange multiplier methods, new contact resolution strategies based on iterative fixed-point schemes are currently being explored at the CEA. These approaches offer several advantages: they avoid the direct solution of complex and ill-conditioned systems, significantly improve numerical efficiency, and exhibit very low sensitivity to algorithmic parameters, making them particularly well suited for high-performance computing (HPC) environments.
The objective of this PhD work is to extend these strategies to more complex and realistic situations, by taking into account nonlinear material behaviors and incorporating more sophisticated contact laws, such as friction. Depending on the progress of the work, the final phase will focus on transferring the developments to a high-performance computing (HPC) environment, using a parallel finite element solver.
The project will benefit from internationally recognized expertise in mechanics, applied mathematics, and nuclear fuel simulation, with supervision from CEA researchers and additional academic collaborations (CNRS).
[1] P. Wriggers, "Computational Contact Mechanics", Springer, 2006. doi:10.1007/978-3-540-32609-0.
[2] V. Yastrebov, "Numerical Methods in Contact Mechanics", ISTE Ltd and John Wiley & Sons, 2013. doi: 10.1002/9781118647974
[3] I. Ramière and T. Helfer, “Iterative residual-based vector methods to accelerate fixed point iterations”, Computers & Mathematics with Applications, vol. 70, no. 9, pp. 2210–2226, 2015. doi: 10.1016/j.camwa.2015.08.025.
Mechanical behavior of fourth-generation Li-Ion cells, study at the microstructure scale
Competition to increase the energy density of Li-Ion batteries is leading to the consideration of batteries with solid rather than liquid electrolytes. In this regard, sulfur-based electrolytes such as argyrodites are of great interest due to their high ionic conductivity and mechanical properties allowing a simpler manufacturing. Under the effect of lithiation/delithiation cycles, the silicium active particles embedded within this solid electrolyte cause volume variations that can damage the electrode and reduced its lifetime. This is why batteries with solid sulfide electrolytes only cycle properly when kept under pressure. The objective of this thesis is therefore to model these charge-discharge phases pf the battery at the microstructure scale representative of these new solid electrolyte electrodes. At the silicon particle scale, the work will consist of formulating a lithiation-delithiation model based on previous theoretical work and by comparison with available experimental data. Then, 3D models of electrode microstructures consisting of an argyrodite-type solid electrolyte and silicon particles will be established based on existing characterizations (SEM images). Finally, the microscopic mechanical model of lithiation-delithiation will be integrated on these microstructure models, studying in particular the effects of external mechanical loading on the intensity of mechanical interactions at the microstructure scale and the potential locations of damage. These simulation results will be compared with available measurements (macroscopic and local deformation measurements).
These studies will be carried out at CEA Cadarache within the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE), in close collaboration with the teams of the Laboratory for Innovation in New Energy Technologies and Nanomaterials (LITEN) at CEA Grenoble.
This framework will allow the PhD student to evolve in a stimulating scientific environment and to promote their research work both in France and abroad through conferences and publications in peer-reviewed journals.
Investigation of Fuel Damage under Reactivity-Initiated Accident Conditions Using Laser Heating: Correlation with Fission Gas Release
High-power laser heating is an experimental technique developed within the Fuel Study Department that allows the induction of thermal transients on nuclear ceramic samples. It notably makes it possible to reproduce, at the laboratory scale, the thermomechanical conditions representative of an incidental or accidental sequence, in order to study fundamental mechanisms such as fuel cracking or fragmentation.
Indeed, in certain situations, such as a thermal transient of the Reactivity-Initiated Accident (RIA) type, fuel fragmentation (or over-fragmentation) can lead to the release of fission gases and ultimately result in the rupture of the fuel rod cladding.
This type of transient is particularly characterized by a complex spatiotemporal evolution of temperature within the fuel, which is difficult to reproduce at the laboratory scale. To date, only high-power laser heating techniques make it possible to replicate the heating rates reached during such transients and to reproduce the thermomechanical conditions of an RIA at the scale of a manipulable sample in the laboratory.
In this context, the PhD project aims to provide experimental data related to fuel fragmentation and over-fragmentation under Reactivity-Initiated Accident conditions. To achieve this, the student will be required to improve and develop the existing experimental setup and perform experiments aimed at reproducing the thermomechanical conditions leading to fuel fragmentation. A combined experimental/modeling approach will be necessary to optimally design and interpret the experiments. The data obtained will be used to validate the fragmentation models developed at CEA and should also allow projections for integrating these experimental techniques into shielded cells.
The PhD will be conducted within a collaborative framework (CHAIRE MATLASE) between LAMIR (Laboratory for the Analysis of Radionuclide Migration) within the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE) at CEA Cadarache, and the ILM team (Laser-Matter Interaction) at the Institut Fresnel in Marseille. The latter will provide expertise in high-power laser/material interactions and optical instrumentation for the development of the system and complex optical diagnostics.
This environment will allow the doctoral student to work in a stimulating scientific setting and to disseminate their research both in France and internationally, through conferences and publications in peer-reviewed journals.
[1]M. Reymond, J. Sercombe, L. Gallais, T. Doualle, and Y. Pontillon, ‘Thermo-mechanical simulations of laser heating experiments on UO2’, Journal of Nuclear Materials, vol. 557, 2021, doi: 10.1016/J.JNUCMAT.2021.153220.
[2]M. Reymond et al., ‘High power laser heating of nuclear ceramics for the generation of controlled spatiotemporal gradients’, J Appl Phys, vol. 134, no. 3, p. 33101, Jul. 2023, doi: 10.1063/5.0146541.
[3]Hugo Fuentes et al., ‘Numerical and experimental simulation of nuclear fuel fragmentation via laser heating of ceramics’, TopFuel 2024. Accessed: Oct. 02, 2025. [Online]. Available: https://www.researchgate.net/publication/386167297_Numerical and experimental simulation of nuclear fuel via laser heating of ceramics
Multi-physics modelling of a light water nuclear reactor operating under natural convection: study of innovative solutions for startup and power control
Among the most recent designs of water-moderated Small Modular Reactors (SMR), several concepts are characterized by natural convection in the primary circuit during normal and abnormal operation, with the aim of increasing the inherent safety of the design. The absence of primary pumps in this type of SMRs significantly complicates the start-up and power increase ramps. This requires the development of specific start-up procedures to heat up the primary water circuit and enable the reactor to reach its nominal conditions, in accordance with safety requirements. These kinds of procedures rely on simulations using validated models to understand the reactor behavior during these phases and define the accessible parameters domain.
The goal of this PhD project is to develop a numerical model capable of simulating the startup of an SMR operating in natural convection, and to contribute to the validation of this model. The PhD study also aims at developing a methodology for reactor control systems optimization, to attain a fast startup while remaining within the prescribed safety criteria.
The analysis of the reactor startup procedure entails two disciplines: thermal-hydraulics and neutronics, which requires the development of multi-physics coupled simulation tools. Three scientific calculation tools in particular will be coupled in the framework of the PhD study: CATHARE3 (reactor system thermal-hydraulics), FLICA5 (core thermal-hydraulics) and APOLLO3 (neutronics).
The PhD student will work in a team of neutron physicists and thermohydraulic engineers at the IRESNE Institute (CEA Cadarache). He/she will develop skills in nuclear reactor physics and modeling.
Simulation of crack initiation and propagation in random heterogeneous materials
This PhD thesis is concerned with cracking in nuclear fuels at the microstructure level, a phenomenon that is essential to understand in order to model the behavior of materials under irradiation. Indeed, crack initiation and propagation can lead to the release of fission gases and the formation of fragments inducing fissile matter displacement. Current industrials models are based on simplified representations of the porous microstructure and empirical fracture criteria, which limits their physical accuracy and validation by separate effects.
To overcome these limitations, the proposed thesis work consists of using multi-scale approaches and high-performance computing (HPC) finite element simulations. The main objectives are to define a Representative Volume Element (RVE) for crack initiation in materials with random porosity, improve the failure criteria used in legacy codes and define their uncertainties, and finally establish the domain of validity for analyzing crack propagation in the RVE.
The first line of research consists of rigorously defining the size of the RVE based on local physical variables such as the maximum principal stress. Variance reduction methods will be used to optimize the number of calculations required and estimate the associated errors.
In a second step, simulations performed to determine the RVE size will be used to improve industrial models. The approach will seek to separate the mechanical effects of an isolated bubble from those resulting from interactions between neighboring bubbles. Machine learning techniques may be used to develop this new model. Validation will be based on indirect measurements of cracking, such as gas release observed during thermal annealing, particularly for high burn-up structure (HBS) fuels, where legacy models fail to predict the kinetics of cracking.
Finally, crack propagation within the RVE will be studied using 3D phase field simulations, which allow for detailed representation of the various stages after the crack initiation. The influence of boundary conditions on the RVE will be examined by comparison with simulations on larger domains.
The thesis will be carried out at the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE) of the CEA Cadarache, within the PLEIADES platform development team, which is specialized in fuel behavior simulation and multiscale numerical methods. It will be conducted in collaboration with the CNRS/LMA as part of the MISTRAL joint laboratory, notably on aspects relating to the analysis of random medium representativeness and micromechanical simulation of crack propagation.
Study and Modelling of Tritium Speciation from the Outgassing of Tritiated Waste
Tritium, the radioactive isotope of hydrogen, is used as fuel for nuclear fusion, particularly in the ITER research reactor currently under construction in Cadarache (France). Its small size allows it to easily diffuse into materials, which will lead to the production of waste containing tritium after the operational phase of ITER.
To optimize the management of this tritiated waste, the CEA is developing technological solutions aimed at extracting and recycling tritium, as well as limiting its migration to the environment. The effectiveness of these solutions largely depends on the chemical form in which tritium is released. Experience from the outgassing of tritium from various types of waste indicates that it is released in two main chemical forms: tritiated hydrogen (HT) and tritiated water vapor (HTO), in varying proportions.
However, the mechanisms determining the distribution of tritium between these two species are not well understood. Several factors, such as oxygen and water concentrations, the nature and surface state of the waste, and the concentration of tritium, can influence this speciation.
The objectives of this thesis are as follows:
- To identify the phenomena affecting the speciation of tritium during the outgassing of tritiated waste.
- To conduct an experimental study to verify the proposed hypotheses.
- To develop a numerical model to predict the proportions of HT and HTO released, in order to optimize the management of this waste.
The thesis will be conducted within the IRESNE Institute (Institute for Research on Nuclear Systems for Low Carbon Energy Production) at the CEA site in Cadarache, in a laboratory specialised in tritium studies. The PhD candidate will work in a stimulating scientific environment and will have the opportunity to showcase their research work. The candidate must hold an engineering degree or a master’s degree in Chemical Engineering, Process Engineering, or Chemistry.
Modeling of water ingression in a severe accident by separate effect testing
Nuclear energy is one of the pillars of the energy transition due to its low carbon footprint. It requires advanced safety studies, particularly regarding hypothetical severe nuclear accidents. These scenarios involve core meltdown and the formation of corium (molten radioactive material magma). Understanding corium behavior is a key element of nuclear safety.
At IRESNE institute of CEA Cadarache, the MERELAVA facility studies accident mitigation strategies by spraying water onto corium from above. A prototypical corium bath (containing depleted uranium) is cooled by water spraying under realistic conditions. This setup allows the study of complex interactions between corium, water, and the sacrificial concrete beneath.
In this context, the water ingression phenomenon plays a central role in corium cooling. During spraying, the solidified crust cracks, water seeps into the cracks and evaporates, significantly increasing the extracted heat flux compared to conduction alone. However, current models poorly describe this mechanism and struggle to predict its impact, mainly due to its highly multi-physical nature.
This thesis aims to study ingression through dedicated experiments on MERELAVA, to characterize the crust and to measure the ingression flux using 3D-printed representative matrices. The goal is to improve the existing physical model, with results compared to more complex experimental data. The thesis will primarily take place in the Severe Accidents experimental laboratory of the IRESNE institute. The candidate should have expertise in fluid mechanics and heat and mass transfer.
What mechano-thermal coupling is necessary for fast transients? Evaluation of the contributions of thermodynamics to irreversible processes.
The Laboratory for the Analysis of Radioelement Migration (LAMIR) at the Institute for Research on Nuclear Systems (IRESNE) of the CEA Cadarache has developed a set of measurement methods to characterize the release of fission products from nuclear fuel during transient thermal transients. For these transients, it is important to simulate the mechanical stresses associated with temperature changes that could lead to fracturing of the tested fuel samples . This thesis focuses on modeling hypothetical and very rapid accidental power transients. Its objective is to implement a new model based on the thermodynamics of irreversible processes (TIP).
The first part of this thesis will aim to validate the thermomechanical coupling model in TIP, which was proposed in our laboratory (https://www.mdpi.com/2813-4648/3/4/33). This will be an essentially analytical approach to establish the orders of magnitude of the various mechanisms involved. The second part will apply this formalism to experimental results obtained during rapid heating experiments using laser beams.
One of the main challenges of numerical simulation with TIP is calculating the temperature and stress fields simultaneously, rather than sequentially as in current models. We will start with a 1D program (in Python or another language) that will be progressively refined. Comparing the results obtained with TIP and with current models will help us identify situations in which TIP-specific couplings must be taken into account to achieve accurate predictions.
The PhD candidate will benefit from the support of experts in thermodynamics, mechanics, and programming. The research will lead to scientific publications and conference presentations. Owing to the diversity of the fields involved, this thesis topic offers excellent career prospects in both industry and academic research.
Lightweight and high-strength metamaterials with innovative architectures manufactured by additive manufacturing for constrained environments
Environmental constraints, rising raw material costs, and the need to reduce carbon footprints drive the development of more porous materials that combine lightness with mechanical strength. Such materials meet the requirements of strategic sectors including aerospace, space, transportation, energy, and high-performance physics instruments.
Mechanical metamaterials, composed of micro-lattice structures produced by 3D printing, offer a unique potential to address these challenges. By tailoring the topology of their internal networks, it becomes possible to achieve stiffness-to-density ratios higher than those of conventional materials and to adapt their architecture to target specific mechanical or functional properties.
This thesis is part of this wave of innovation. It aims to develop ultralight metallic metamaterials whose architecture is optimized to maximize mechanical performance while maintaining isotropy, ensuring predictable behavior using conventional engineering tools, including finite element analysis, numerical simulation, and multiscale approaches. The research builds on the recognized expertise of the CEA, particularly at IRAMIS and IRFU/DIS, in designing isotropic random metastructures and shaping them through metal additive manufacturing.
By combining numerical mechanics, advanced design, multi-process additive manufacturing, and in situ characterization, this thesis seeks to push the current limits of design and fabrication of complex metallic structures.
Acoustic and Ultrasound-based Predictive Maintenance Systems for Industrial Equipment
Power converters are essential in numerous applications such as industry, photovoltaic systems, electric vehicles, and data centers. Their conventional maintenance is often based on fixed schedules, leading to premature replacement of components and significant electronic waste.
This PhD project aims to develop a novel non-invasive and low-cost ultrasound-based monitoring approach to assess the state of health and remaining useful life (RUL) of power converters deployed across various industries.
The research will focus on identifying and characterizing ultrasonic signatures emitted by aging electronic components, and on developing physics-informed neural networks (PINNs) to model their degradation mechanisms. The project will combine experimental studies with advanced signal processing and AI techniques (compressed sensing), aiming to detect early signs of failure and enable predictive maintenance strategies executed locally (edge deployment).
The research will be carried out within a Marie Sklodowska-Curie Actions (MSCA) Doctoral Network, offering international training, interdisciplinary collaboration, and secondments at leading academic and industrial partners across Europe (Italy and Netherlands for this PhD offer).