Multiphe hydrogen injection at anode side of PEMFC

The alternating feeding architecture (known as Ping-Pong) was developed by the CEA. This architecture emerged in 2013 and has been implemented in several fuel cell systems. Following the latest tests on this architecture, questions remained unanswered. First, it is a question of understanding how species (hydrogen, nitrogen, liquid and gaseous water) move in cells operating with alternating feeding. Control laws influences these movements, it will be necessary to identify the levers to make the most out of it and then to propose methods to promote the evacuation of water and nitrogen while avoiding the evacuation of hydrogen.

The thesis work will aim to optimize the anode architecture with alternating feeding and to bring this architecture to maturity. The key points are the search for an optimum control of this architecture, the achievement of a hydrogen rejection rate of less than 1%. Finally, this optimization will also have to maximize the durability of the stack.

The doctoral student will have to model the movements of species at different time scales (10ms to 10 minutes), understand the mechanisms, adapt the control laws and validate the new control laws on a test bench.
This work will identify solutions to efficiently evacuate liquid water and nitrogen and minimize H2 rejection and then obtain superior performance compared to conventional architectures.

Dynamic clamping of hygrogen fuel cells: experimental and numerical simulation approach

The impact of the clamping of PEMFC stacks has been demonstrated by the publication of numerous experimental measurements. Passive clamping systems were developped to garantee the minimum elasticity necessary notably during temperature changes or to improve the stress distribution. The new components are finer and finer presenting a reduced elasticity range, moreover latest publications demonstrate the impact of clamping on the deformation and performance of few microns thick active layers and it should be a major improvement to integrate an accurate dynamic clamping.
The first aim of the phD is to study experimetally the impact of the dynamic control of the clamping on the performances of stacks. These tests will be performed with stacks integrating either stamped metallic bipolar plates: the reference technology, or printed cells: the new technology in development at CEA. In parallel, the candidate will learn the model, actually under development thanks to a phD, simulating stresses and deformations, and the associated multiphysic parameters such as porosity or electric resistance, in function of clamping.
Thanks to the synthesis of these experimental and numerical results the candidate will improve the undertanding of the impact of the clamping and will propose solutions to improve notably the durability which is a critical point for our ongoing european or industrial projects.
In function of the phD progress, vibratory tests could be performed to evaluate the potential input of mechanical spectroscopy, notably for diagnosis.

Mesure de la réponse intra-pixel de détecteur infrarouge à base de HgCdTe avec des rayons X pour l’astrophysique

In the field of infrared astrophysics, the most commonly used photon sensors are detector arrays based on the HgCdTe absorbing material. The manufacturing of such detectors is a globally recognized expertise of CEA/Leti in Grenoble. As for the Astrophysics Department (DAp) of CEA/IRFU, it holds renowned expertise in the characterization of this type of detector. A key characteristic is the pixel spatial response (PSR), which describes the response of an individual pixel in the array to the point-like generation of carriers within the absorbing material at various locations inside the pixel. Today, this detector characteristic has become a critical parameter for instrument performance. It is particularly crucial in applications such as measuring galaxy distortion or conducting high-precision astrometry. Various methods exist to measure this quantity, including the projection of point light sources and interferometric techniques. These methods, however, are complex to implement, especially at the cryogenic operating temperatures of the detectors.
At the DAp, we propose a new method based on the use of X-ray photons to measure the PSR of infrared detectors. By interacting with the HgCdTe material, the X-ray photon generates carriers locally. These carriers then diffuse before being collected. The goal is to derive the PSR by analyzing the resulting images. We suggest a two-pronged approach that integrates both experimental methods and simulations. Data analysis methods will also be developed. Thus, the ultimate objective of this thesis is to develop a new, robust, elegant, and fast method for measuring the intra-pixel response of infrared detectors for space instrumentation. The student will be based at the DAp. This work also involves collaboration with CEA/Leti, combining the instrumental expertise of the DAp with the technological knowledge of CEA/Leti.

Development and characterization of a reliable 13.5 nm EUV OAM carrying photon beamline

The Extreme UltraViolet (EUV) photon energy range (10-100 nm) is crucial for many applications spanning from fundamental physics (attophysics, femto-magnetism) to applied domains such as lithography and nanometer scale microscopy. However, there are no natural source of light in this energy domain on Earth because photons are strongly absorbed by matter, requiring thus vacuum environment. People instead have to rely on expensive large-scale sources such as synchrotrons, free electron lasers or plasmas from large lasers. High order laser harmonic generation (HHG), discovered 30 years ago and recognized by the Nobel Prize in Physics in 2023, is a promising alternative as a laboratory scale EUV source. Based on a strongly nonlinear interaction between an ultrashort intense laser and an atomic gas, it results in the emission of EUV pulses with femto to attosecond durations, very high coherence properties and relatively large fluxes. Despite intensive research that have provided a clear understanding of the phenomenon, it has up to know been mostly limited to laboratories. Breaching the gap towards applied industry requires increasing the reliability of the beamlines, subjects to large fluctuations due to the strong nonlinearity of the mechanism, and developing tools to measure and control their properties.

CEA/LIDYL and Imagine Optic have recently joined their expertise in a join laboratory to develop a stable EUV beamline dedicated to metrology and EUV sensors. The NanoLite laboratory, hosted at CEA/LIDYL, is based on a high repetition rate compact HHG beamline providing EUV photons around 40eV. Several EUV wavefront sensors have been successfully calibrated in the past few years. However, new needs have emerged recently, resulting in the need to upgrade the beamline.

The first objective of the PhD will be to install a new HHG geometry to the beamline to enhance its overall stability and efficiency and to increase the photon energy to 92eV, a golden target for lithography. He will then implement the generation of a EUV beam carrying orbital angular momentum and will upgrade Imagine Optic’s detector to characterize its OAM content. Finally, assisted by Imagine Optic engineers, he will develop a new functionality to their wavefront sensors in order to enable large beam characterization.

Secure and Agile Hardware/Software Implementation of new Post-Quantum Cryptography Digital Signature Algorithms

Cryptography plays a fundamental role in securing modern communication systems by ensuring confidentiality, integrity, and authenticity. Public-key cryptography, in particular, has become indispensable for secure data exchange and authentication processes. However, the advent of quantum computing poses an existential threat to many of the traditional public-key cryptographic algorithms, such as RSA, DSA, and ECC, which rely on problems like integer factorization and discrete logarithms that quantum computers can solve efficiently. Recognizing this imminent challenge, the National Institute of Standards and Technology (NIST) initiated in 2016 a global effort to develop and standardize Post-Quantum Cryptography (PQC). After three rigorous rounds of evaluation, NIST announced its first set of standardized algorithms in 2022. While these algorithms represent significant progress, NIST has expressed an explicit need for additional digital signature schemes that leverage alternative security assumptions, emphasizing the importance of schemes that offer shorter signatures and faster verification times to enhance practical applicability in resource-constrained environments. Building on this foundation, NIST opened a new competition to identify additional general-purpose signature schemes. The second-round candidates, announced in October 2024, reflect a diverse array of cryptographic families.

This research focuses on the critical intersection of post-quantum digital signature algorithms and hardware implementations. As the cryptographic community moves toward adoption, the challenge lies not only in selecting robust algorithms but also in deploying them efficiently in real-world systems. Hardware implementations, in particular, must address stringent requirements for performance, power consumption, and security, while also providing the flexibility to adapt to multiple algorithms—both those standardized and those still under evaluation. Such agility is essential to future-proof systems against the uncertainty inherent in cryptographic transitions. The primary objective of this PhD research is to design and develop hardware-agile implementations for post-quantum digital signature algorithms. The focus will be on supporting multiple algorithms within a unified hardware framework, enabling seamless adaptability to the diverse needs of evolving cryptographic standards. This involves an in-depth study of the leading candidates from NIST’s fourth-round competition, as well as those already standardized, to understand their unique computational requirements and security properties. Special attention will be given to designing modular architectures that can support different signatures, ensuring versatility and extensibility. The proposed research will also explore optimizations for resource efficiency, balancing trade-offs between performance, power consumption, and area utilization. Additionally, resilience against physical attacks (side-channel attacks and fault injection attacks) will be a key consideration in the design process. This PhD project will be conducted within the PEPR PQ-TLS project in collaboration with the TIMA laboratory (Grenoble), the Agence nationale de la sécurité des systèmes d’information (ANSSI) and INRIA.

Numerical aand experimental study of nuclear fuel cracking and oxyde-cladding delamination

Sans objet.

Distributed Passive Radar

Our objective is to detect and locate drones entering an urban area to be protected by observing the signals emitted by cellular stations. Studies have shown that it is possible to locate a drone if it is close to the listening system and the cellular station (i.e. the base station). When the situation is more complex (i.e. there is no direct path between the cellular station and the radar or in the presence of several transmitting cellular stations causing a high level of interference), a single listening system called passive radar cannot correctly detect and locate the drone. To overcome these difficult conditions, we wish to distribute or deploy in the area to be protected a set of low-complexity passive radars which optimally exploit the signals emitted by these cellular stations. A distribution and deployment strategy for passive radars must then be considered by taking into account the positions of the transmitting cellular stations. The possibility of exchanging information between passive radars must also be considered in order to better manage interference linked to cellular stations.

For high-performance, safe, and long-lasting batteries: understanding the role of an additive in liquid electrolytes

The trade-off between performance, aging, and safety remains a major challenge for Li-ion batteries [1]. Indeed, the incorporation of certain additives into the 3rd-generation electrolyte aims to delay or reduce the consequences of thermal runaway, thus reducing the risk of fire or explosion. However, this approach can have negative effects on other key parameters, such as ionic conductivity [2,3]. Therefore, this thesis proposes to study the coupled effects of these additives in order to better understand and potentially predict their impact on each of these indicators.

At the beginning of this work, an additive will be selected to study its role in an NMC 811/Gr-Si chemistry and a 3rd-generation liquid electrolyte, in terms of performance, long-term stability, and safety. The additive will be chosen based on the state of the art and post-mortem analysis of commercial cells representative of the current market. In parallel, new commercial cells of a few Ah will be used. These will be equipped with a reference electrode, internal temperature measurement, and ionic conductivity monitoring. The cells will then be activated with the selected electrolyte at different additive concentrations. Electrochemical performance, along with chemical and morphological characterization of the materials present, will be studied. Key safety parameters (thermal stability, release of reducing gases, O2, released energy, flammability of the electrolyte) for these new cells will be measured at different additive concentrations. The internal instrumentation, including the reference electrode, will also be used innovatively to study the onset of thermal runaway under these conditions.

A full aging campaign will be conducted over a maximum period of one year. At regular intervals, a sample of cells will be studied to characterize the impact of aging on chemical, electrochemical, and morphological changes, as well as on key safety parameters. The most important mechanisms, along with simplified laws governing safety as a function of additive quantity and aging, will be proposed.

[1] Batteries Open Access Volume 9, Issue 8, August 2023, Article number 427
[2] Journal of Energy Storage 72 (2023) 108493
[3] Energy Storage Materials 65 (2024) 10313

Software support for sparse computation

The performance of computers has become limited by data movement in the fields of AI, HPC and embedded computing. Hardware accelerators do exist to handle data movement in an energy-efficient way, but there is no programming language that allows them to be implemented in the code supporting the calculations.

It's up to the programmer to explicitly configure DMAs and use function calls for data transfers and do program analysis to identify memory bottleneck

In addition, compilers were designed in the 80s, when memories worked at the same frequency as computing cores.

The aim of this thesis will be to integrate into a compiler the ability to perform optimizations based on data transfers.

Numerical optimisation of internal safety devices of batterry cells depending on chemistry

Thermal runaway (TR) of a battery pack's elementary accumulator is a key factor that can lead to various safety issues, such as fires or explosions, involving both property and people. Several safety devices can prevent and/or mitigate the consequences of thermal runaway, including the PTC (Positive Temperature Coefficient) to limit short-circuit current, the CID (Current Interrupt Device) to disconnect the external electrical terminals from the internal active elements, and the Safety Vent for cell depressurization. Internal gas pressure is the main triggering factor. However, since the gas quantity strongly depends on the chemistry involved, these safety devices should be optimized for future battery generations.

In this PhD thesis, we will develop a methodology for sizing these safety devices through numerical simulations, incorporating all characterizations from the material scale to abusive cell testing. This research will therefore focus on both numerical and experimental aspects in parallel, in collaboration with other laboratories in our department

Top