Giant magnetoresistance resistors for local characterization of surface magnetic state: towards Non-Destructive Testing (NDT) applications
CIFRE thesis in the field of non-destructive testing using magnetic sensors in collaboration with 3 partners:
Laboratoire de Nanomagnétisme et Oxyde (SPEC/LNO) du CEA Paris-Saclay
Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon
Entreprise CmPhy
3D ultrasound imaging using orthogonal row and column addressing of the matrix array for ultrasonic NDT
This thesis is part of the activities of the Digital Instrumentation Department (DIN) in Non-Destructive Testing (NDT), and aims to design a new, fast and advanced 3D ultrasound imaging method using matrix arrays. The aim will be to produce three-dimensional ultrasound images of the internal volume of a structure that may contain defects (e.g. cracks), as realistically as possible, with improved performance in terms of data acquisition and 3D image computation time. The proposed method will be based on an approach developed in medical imaging based on Row and Column Addressed (RCA) arrays. The first part will focus on the development of new data acquisition strategies for matrix arrays and associated ultrafast 3D imaging using RCA approach in order to deal with conventional NDT inspection configurations. In the second part, developed methods will be validated on simulated data and evaluated on experimental data acquired with a conventional matrix array of 16x16 elements operating in RCA mode. Finally, a real-time proof of concept will be demonstrated by implementing the new 3D imaging methods in a laboratory acquisition system.