Mesure de la réponse intra-pixel de détecteur infrarouge à base de HgCdTe avec des rayons X pour l’astrophysique
In the field of infrared astrophysics, the most commonly used photon sensors are detector arrays based on the HgCdTe absorbing material. The manufacturing of such detectors is a globally recognized expertise of CEA/Leti in Grenoble. As for the Astrophysics Department (DAp) of CEA/IRFU, it holds renowned expertise in the characterization of this type of detector. A key characteristic is the pixel spatial response (PSR), which describes the response of an individual pixel in the array to the point-like generation of carriers within the absorbing material at various locations inside the pixel. Today, this detector characteristic has become a critical parameter for instrument performance. It is particularly crucial in applications such as measuring galaxy distortion or conducting high-precision astrometry. Various methods exist to measure this quantity, including the projection of point light sources and interferometric techniques. These methods, however, are complex to implement, especially at the cryogenic operating temperatures of the detectors.
At the DAp, we propose a new method based on the use of X-ray photons to measure the PSR of infrared detectors. By interacting with the HgCdTe material, the X-ray photon generates carriers locally. These carriers then diffuse before being collected. The goal is to derive the PSR by analyzing the resulting images. We suggest a two-pronged approach that integrates both experimental methods and simulations. Data analysis methods will also be developed. Thus, the ultimate objective of this thesis is to develop a new, robust, elegant, and fast method for measuring the intra-pixel response of infrared detectors for space instrumentation. The student will be based at the DAp. This work also involves collaboration with CEA/Leti, combining the instrumental expertise of the DAp with the technological knowledge of CEA/Leti.
Distributed Passive Radar
Our objective is to detect and locate drones entering an urban area to be protected by observing the signals emitted by cellular stations. Studies have shown that it is possible to locate a drone if it is close to the listening system and the cellular station (i.e. the base station). When the situation is more complex (i.e. there is no direct path between the cellular station and the radar or in the presence of several transmitting cellular stations causing a high level of interference), a single listening system called passive radar cannot correctly detect and locate the drone. To overcome these difficult conditions, we wish to distribute or deploy in the area to be protected a set of low-complexity passive radars which optimally exploit the signals emitted by these cellular stations. A distribution and deployment strategy for passive radars must then be considered by taking into account the positions of the transmitting cellular stations. The possibility of exchanging information between passive radars must also be considered in order to better manage interference linked to cellular stations.
Influence of ionization density in water on fluorescent solutes. Application to the detection of alpha radiation
The location and rapid identification, at a distance, of sources of alpha and beta particle emissions on surfaces or in wet cavities or solutions, in nuclear facilities undergoing decommissioning or to be cleaned up, is a real challenge.
The aim of the proposed PhD project is to develop a concept for the remote detection of fluorescence light from water radiolysis processes on molecules or nano-agents. Temporal characterization using fluorescence lifetime measurements will enable detection to be attributed to a type of radiation, depending on its linear energy transfer (LET). In the Bragg peak of alpha radiation, where the TEL is maximal, the ionization density due to this TEL influences the fluorescence lifetime. However, dose rate effects also need to be considered.
Molecules and nanoparticles that are candidates for forming fluorescent products and are sensitive to the ionization density and radicals produced in traces at very short times will be identified by guided bibliography work, then tested and compared by measurements. Spectral measurements (absorption and fluorescence) and fluorescence lifetimes of the corresponding fluorescent species will be carried out using the multi-channel (16-channel) TCSPC (Time Corelated Single Photon Counting) method. Ion beams or alpha particles from sealed sources will be used for proof-of-concept. Ion beams or alpha particles from sealed sources will be used for proof-of-concept in the CEA clean-up/dismantling program.
Design and implementation of cryogenic electronics for signal acquisition at cryogenic temperatures
The aim of our proposed thesis is to demonstrate that it is possible to integrate at cryogenic temperatures the entire instrumentation chain for reading and controlling quantum components at cryogenic temperatures
qubits. In other words, we are seeking to place in-situ, in the cryostat and as close as possible to the quantum components
(qubits), all the systems that are currently located outside. In addition, to achieve a major breakthrough
we are aiming for a fully programmable microwave chain (> 2 GHz). This is the subject of an ongoing thesis
financed by the Agence Innovation Défense (AID) and the Commissariat à l'Énergie Atomique (CEA) and a RAPID-type project application.
RAPID type project.
As part of this thesis, we will start at a few hundred MHz. Several main problems
are identified and need to be solved, including
- design and integration of chiplets in System-in-Packages (SiPs) compatible with cryogenic temperatures ;
- interfacing and integrating the Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) and processing components;
- manage high data rates (several tens of Gbit/s per qubit);
- maximum roundtrip latency of 200 ns;
- energy management (a few tens of mW budget per qubit);
- choice of cryogenic stages adapted to the different processing stages;
- choice of independent technologies
Digital reconstruction of an industrial tank for the improvement of real-time monitoring instrumentation
In the context of industrial digitalization and real-time monitoring, accessing 3D fields (velocity, viscosity, turbulence, concentration, etc.) in real time can be crucial, as local sensor networks are sometimes insufficient to provide a comprehensive view of the system's dynamics. This PhD project aims to investigate a methodology for the real-time reconstruction of fields within an instrumented industrial tank equipped with a mixing system. The proposed approach relies on finite element modeling of the relevant physics within the tank (e.g., fluid dynamics, thermal processes) and model reduction techniques such as physics-based Machine Learning (virtual sensor approach). A key focus of this thesis will also be the development of the tank instrumentation and its associated acquisition chain, both to validate the models and to generate a database for applying the proposed methodology.
Study and characterization of nucleate boiling in reactor conditions
In the context of the energy transition and the place of nuclear power in the energy mix, controlling safety and optimizing reactor performance represent imperative research areas with high added value. In this context, boiling at high pressure and temperature is a key issue for water reactors widely deployed in France and around the world.
The many works on this subject carried out in the past show their limitation in terms of representativeness and present certain gaps (e.g. the evolution of the topology of the flow at high pressure). The proposed subject therefore concerns the characterization of nucleate boiling for a wide range of pressure and temperature conditions, and more particularly the study of the coupling between the thermal properties of the wall and the flow (bubble sizes, detachment frequency, local void ratio, etc.). This work will also provide data relating to boiling models that can be used in CFD-type numerical calculation tools. Direct visualization of the flow using portholes (a process successfully implemented in the past), coupled with the use of stereological tools (in collaboration with the LRVE at CEA Marcoule) and associated with a measurement of the wall temperature, should make it possible to achieve the set objectives. These measurements carried out under representative reactor conditions (thermohydraulic conditions, real fluid, representative heating surface) make this study original compared to existing work.
After an initial critical literature review, the PhD student will design and test the experimental devices before implementing them through test campaigns on a dedicated installation. The results collected will be analyzed, interpreted, compared with existing models and may, if necessary, lead to the construction of new models. This thesis will take place on the POSEIDON experimental platform, dedicated to flows studies, and will allow the doctoral student to approach all phases of a research project, from the design of experimental devices to the interpretation of the results obtained.
Elementary characterization by neutron activation for the circular economy
As part of the circular economy, a major objective is to facilitate the recycling of strategic materials needed by industry. This requires, first of all, the ability to accurately locate them in industrial components that are no longer in use. Non-destructive nuclear measurement meets this objective, based on prompt gamma neutron activation analysis (PGNAA). This approach involves interrogating the samples to be analyzed with an electrical generator emitting pulses of fast neutrons that thermalize in a polyethylene and graphite cell: between the pulses, radiative capture gamma rays are measured. The advantage of such an approach lies in the fact that high-value elements such as dysprosium or neodymium have a high radiative capture cross-section by thermal neutrons, and that the latter can probe deep into large volumes of matter (several liters).
A previous thesis demonstrated the feasibility of this technique and opened up promising avenues of research, with two complementary strands to make concrete progress towards practical recycling objectives. The first involves experimental and simulation studies of the performance of gamma cascade measurement on cases representative of industrial needs (size and composition of objects, measurement speed). The second will enrich and improve the exploitation of the vast amount of information available from gamma-ray cascade measurements.
In practice, the work will be carried out as part of a collaboration between CEA and the FZJ (ForschungsZentrum Jülich) institute in Germany. The first half of the thesis will be carried out at CEA IRESNE Nuclear Measurement Laboratory. The second half of the thesis will be carried out at the FZJ (Jülich Centre for Neutron Science, JCNS). The German part of the thesis will involve experiments with the FaNGaS device at the Heinz-Maier-Leibnitz Zentrum (MLZ) in Garching.
Flow rate measurement in a pipeline using thermal noise detection
Flow measurement is a key factor in process management, particularly in the nuclear and industrial sectors. However, current measurement methods require complex installations, especially in environments with strict regulations, such as in the nuclear sector. To address these challenges, the CEA has developed an innovative method for measuring flow in non-isothermal fluids, based on the analysis of thermal fluctuations. This technique, which uses two temperature sensors installed upstream and downstream on the pipeline, is simple to implement and involves minimal constraints. The temperature variations are carried by the flow from one sensor to the other, and by comparing the signals recorded by these sensors, it is possible to calculate the thermal transit time between them, which allows the flow velocity, and consequently, the flow rate, to be determined. The goal of this thesis is to optimize this method by enhancing its reliability. To achieve this, the propagation of thermal noise within the flow will be studied, and both the type and placement of the sensors will be optimized. This work will be carried out within the Core and Circuit Thermohydraulics Laboratory in collaboration with the Instrumentation, System and Method Laboratory, which has state-of-the-art experimental equipment. Numerical simulations will complement the experimental work to validate the obtained results. In parallel, artificial intelligence approaches will be explored to improve the processing of thermal signals. By the end of the thesis, the doctoral candidate will have acquired extensive skills in experimental and numerical work and will be able to leverage these in future endeavors.
Investigation and use of uranium glasses for optical neutron detection
The Dosimetry, Sensors and Instrumentation Laboratory of the CEA/IRESNE Cadarache develops, manufactures and operates neutron flux detectors used in the vicinity of and inside nuclear reactor cores. In addition to conventional detectors (fission chambers, collectrons, etc.), the laboratory is working on innovative measurement methods such as optical detectors, semiconductors, fiber scintillators, etc. As part of this PhD thesis, the laboratory wants to explore the potential of Uranium-doped glasses. These glasses are known to show bright fluorescence under various types of radiations. The main idea of this thesis is to try to exploit this fluorescence to detect the fission reactions induced when the glass is exposed to a neutron flux. This could enable the development of a new generation of optical neutron detectors halfway between a fission chamber and a scintillator.
The thesis will focus on two main topics:
- firstly, a detailed understanding of fluorescence mechanisms, and the synthesis of uranium glass with properties optimized for our needs (sensitivity, emission spectrum, isotopic vector, etc.). Synthesis will be carried out in partner laboratories;
- secondly, the development of a dedicated instrumentation, probably in the form of optical fibers, to test these prototypes in a reactor.