From angstroms to microns: a nuclear fuel microstructure evolution model whose parameters are calculated at the atomic scale
Controlling the behavior of fission gases in nuclear fuel (uranium oxide) is an important industrial issue, as fission gas release or precipitation limit the use of fuels at extended burn-ups. The gas behavior is strongly influenced by the material’s microstructure evolution due to the aggregation of irradiation-induced defects (gas bubbles, dislocation loops and lines). Cluster dynamics (CD) (a kind of rate theory model) is relevant for modelling the nucleation/growth of the defect clusters, there gas content and the gas release. The current model has been parameterized following a multiscale approach, based on atomistic calculations (ab initio or empirical potentials). This model has been successfully applied to annealing experiments of UO2 samples implanted with rare gas atoms and has emphasized the impact of the irradiation damage on gas release. The aim of this PhD thesis is now to improve the model, particularly the damage parameterization, and to extend its validation domain through in depth comparison of simulation with a large set of recently obtained experimental results, such as gas release measurement by annealing of sample implanted in ion beam accelerator, bubble and loop observation by transmission electrons microscopy of implanted or in-pile irradiated samples. This global analysis will finally yield an improved parameterization of the CD model.
The research subject combines a “theoretical” dimension (improving the model) with an “experimental” one (interpreting existing experiments or designing some new ones). The variety of techniques will introduce you into the experimental world and thus broaden your scientific skills. You will be welcomed at the Fuel Behavior Modeling Laboratory (part of the Institute for Research on Nuclear Systems for Low-Carbon Energy Production, IRESNE, CEA Cadarache), where you will benefit from an open environment rich in academic collaborations. You also have to manage collaborations for the experiments analysis, for the model development and for the specification of additional atomistic calculations. You will be at the interface of atomistic techniques, large-scale simulation and various experimental techniques. Therefore, You will develop a broad view of irradiation effects in materials and of multi-scale modelling in solids in general.
This project is an opportunity to contribute to the overall development of numerical physics applied to multi-scale modeling of materials, occupying a pivotal position and adopting a global viewpoint. This will allow experiencing yourself the way computed fundamental microscopic data finally helps solving complex practical issues.
Further readings:
Skorek et al. (2012). Modelling Fission Gas Bubble Distribution in UO2. Defect and Diffusion Forum, 323–325, 209.
Bertolus et al. (2015). Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. Journal of Nuclear Materials, 462, 475–495.
Development of manganese-doped uranium oxide fuel: sintering mechanisms and microstructural changes
This PhD project focuses on developing nuclear fuels with improved properties through the addition of a dopant, for use in pressurized water reactors.
In nuclear reactors, the fuel consists of uranium dioxide (UO2) pellets stacked inside zirconium alloy cladding. These pellets, in contact with the cladding, must withstand extreme conditions of temperature and pressure. One of the challenges is to limit chemical interactions that may occur during the migration of fission products from the center to the periphery of the pellet and with the cladding. A notable example of such a phenomenon is the stress corrosion assisted by iodine, which can occur during accidental transients.
One strategy is to dope the UO2 ceramic with a metal oxide in order to control the material’s microstructure and also to modify its thermochemical behavior, thereby limiting both the mobility and corrosive nature of fission gases. Among the possible dopants, manganese oxide (MnO) represents a promising option and a potential alternative to chromium oxide (Cr2O3), which is currently a mature solution for the industry.
This PhD will explore the role of manganese in the sintering of UO2, particularly the microstructure and final properties of the fuel. The work will take place at the CEA Cadarache center, within the Institute for research on nuclear systems for low-carbon energy production (IRESNE).
During these three years, you will be hosted in the Laboratory for the study of uranium-based fuels (LCU) within the fuel study department (DEC), in close connection with the Laboratory for fuel behavior modeling (LM2C).
This research, combining experimentation and modeling, will be structured around three main topics:
• Study of the influence of manufacturing conditions on the microstructure of Mn-doped UO2,
• Investigation of the impact of doping on defect formation in UO2 and the associated properties,
• the contribution to the thermodynamic modelling of the system, based on experimental tests.
During this PhD, you will gain solid experience in the fabrication and advanced characterization of innovative materials, particularly in the field of ceramics for the nuclear industry. Your work could lead to publications, patents, and participation in national and international conferences.
You will also acquire numerous technical skills applicable across various research and industrial fields, including energy, microelectronics, chemical and pharmaceutical industries.
Atomistic investigation of the thermophysical properties of metallic nuclear fuel UMo
Uranium – molybdenum alloys UMo present excellent thermal properties and a good uranium density. For those reasons, they are considered as nuclear fuel candidates for research reactors. It is therefore crucial for the CEA to deploy new computational methodologies in order to investigate the evolution of their thermo-physical properties under irradiation conditions.
This project is centered on the application of atomistic methods in order to investigate the stability and diffusion of intra-granular xenon clusters within the metallic nuclear fuel UMo.
The first step of your work will involve continuing the development of atomic-scale computational models for UMo, as initiated within the host laboratory. These models use machine learning methods to develop interatomic potentials and will be validated by comparison with existing experimental data for this material. They will then be used to assess the temperature-dependent evolution and the impact of defect accumulation (both point and extended defects) on several thermophysical properties critical to fuel modeling, such as elastic properties, density, thermal expansion, as well as thermal properties like specific heat and thermal conductivity. In collaboration with other researchers in the department, you will format these results for integration into the Scientific Computing Tools used to simulate the behavior of nuclear fuels.
In a second phase, you will be responsible for extending the validity of your models to account for the formation of fission gases such as xenon within UMo single crystals. This will enable you to simulate the stability of xenon clusters in UMo crystals. These calculations, performed using classical molecular dynamics methods, will be systematically compared with experimental observations obtained via transmission electron microscopy.
The results obtained during the various stages of this project will be completely innovative and will be the subject of scientific publications as well as presentations at international scientific conferences. Besides, this work will enable you to complement your training by acquiring skills applicable to many areas of materials science, including ab initio calculations, machine learning-based interatomic potential fitting, classical molecular dynamics, use of CEA supercomputers, and key concepts in statistical physics and condensed matter physics—fields in which the supervising team members are recognized experts.
You will join the Fuel Behavior Modeling Laboratory at the Research Institute for Nuclear Systems for Low-Carbon Energy Production (IRESNE, CEA Cadarache), a dynamic research team where you will have regular opportunities to interact with fellow PhD students and researchers. This environment also provides extensive opportunities for national and international collaboration, including with:
• Developers and users of the MAIA fuel performance code (dedicated to research reactor fuel studies),
• Experimental researchers from the Nuclear Fuel Studies Department,
• Teams from other CEA centers (Saclay, CEA/DAM),
• International partners.
This rich and multidisciplinary context will enable you to fully engage with the scientific community focused on nuclear materials science.
[1] Dubois, E. T., Tranchida, J., Bouchet, J., & Maillet, J. B. (2024). Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials. Physical Review Materials, 8(2), 025402.
[2] Chaney, D., Castellano, A., Bosak, A., Bouchet, J., Bottin, F., Dorado, B., ... & Lander, G. H. (2021). Tuneable correlated disorder in alloys. Physical Review Materials, 5(3), 035004.
UO2 Powders: Morphological Characterization of Aggregates and Study of Their Interactions Using a Combined Experimental and numerical Approach
This PhD thesis is part of the optimization of nuclear fuel fabrication processes, which rely on the powder metallurgy of uranium dioxide (UO2) and plutonium dioxide (PuO2). These powders exhibit a hierarchical microstructure composed of crystallites forming rigid aggregates, themselves agglomerated into larger structures. The morphology and interactions between aggregates play a key role in the macroscopic behavior of the powders—particularly their flowability, compressibility, and agglomeration capacity—and directly influence the quality of the fuel pellets obtained after pressing and sintering. However, the experimental characterization of these aggregates remains complex and does not yet allow for the establishment of a predictive link between synthesis processes and morphological properties.
The objective of this thesis is to combine experimental and numerical approaches to achieve a detailed characterization of the aggregates in a reference powder. Experimentally, techniques such as Scanning Electron Microscopy (SEM), specific surface area measurement (BET), and laser granulometry will be used to determine particle size, roughness, and size distribution. In parallel, numerical simulations based on the Discrete Element Method (DEM) will be employed to construct a granular digital twin consistent with the experimentally measured properties. This digital twin will allow the reconstruction of the internal structure of the aggregates, the evaluation of interparticle adhesion forces, and the analysis of agglomeration and densification phenomena under controlled conditions.
The PhD will take place at CEA Cadarache within the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE). The student will be assigned to the PLEIADES Fuel Development Laboratory (LDOP), which specializes in simulating nuclear fuel behavior (from fabrication to in-reactor performance) and in multi-scale numerical methods. The work will be carried out in collaboration with the CNRS/LMGC in Montpellier, internationally recognized for its research on granular materials, and with the Uranium Fuel Laboratory (LCU – CEA Cadarache), which has extensive experience in the experimental characterization of uranium powders.
The PhD candidate is expected to demonstrate strong skills in numerical simulation and in the physical analysis of results. He will share its results through publications and conference presentations and will have the opportunity to learn or further develop various experimental and numerical techniques that can be applied in other contexts.In particular, the issues related to the physics of granular media — which constitute the core of this PhD — are of significant industrial relevance and are common to many other sectors handling powders, such as pharmaceuticals, agri-food, and powder metallurgy.
[Hebrard2004] S.Hebrard, Etude des mécanismes d’évolution morphologique de la structure des poudres d’UO2 en voie sèche, thèse de doctorat, CEA-LSG2M-COGEMA), 2004.
[Pizette2010] P. Pizette, C.L. Martin a, G. Delette, P. Sornay, F. Sans, Compaction of aggregated ceramic powders: From contact laws to fracture and yield surfaces, Powder Technology, 198, 240-250, 2010.
[Tran2025] T.-D. Tran , S. Nezamabadi , J.-P. Bayle, L. Amarsid, F. Radjai , Effect of interlocking on the compressive strength of agglomerates composed of cohesive nonconvex particles, Advanced Powder Technology 36, 2025.
Micromechanical Modeling of the Behavior of Polycristals with Imperfect Interfaces: Application to Irradiated UO2 Fuel
This thesis aims to analyze the thermomechanical properties of UO2 fuel used in pressurized water reactors (PWRs), accounting for the effects of microscopic defects. It focuses particularly on intergranular decohesion phenomena observed at various stages of fuel evolution, notably prior to crack initiation and propagation. The objective of this thesis is to clarify the impact of decohesion on both the local and effective properties of UO2 during irradiation. To this end, intergranular decohesion is modeled at the local scale by means of imperfect interface models, which ensure traction continuity while allowing for a displacement jump at grain boundaries. This modeling approach enables the development of homogenization models incorporating innovative theoretical and numerical advances, capable of capturing the behavior of the fuel at very high temperatures, under off-normal and accidental conditions. This work will be conducted at CEA Cadarache,in the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE), in close collaboration with national and international research teams. The tools developed will contribute to improving our understanding of the fuel's properties and to enhancing the accuracy and reliability of existing models, particularly those implemented in the PLEIADES simulation platform developed by the CEA in collaboration with French nuclear industry partners.
Nuclear fuel fragmentation under thermal gradient of fuel during laser heating: correlation, numerical simulation and and adaptation of the experimental setup.
The aim of this thesis is to simulate the cracking of nuclear fuel, which consists of a brittle ceramic material, uranium dioxide, during laser heating experiments. The objective is to compare the numerical results with experimental data through image correlation. This comparison will make it possible to optimize the experimental setup, improve the quality of the experimental results, and move toward a quantitative validation of the gradient damage models used in the simulations.
The starting point of this work is a campaign of uranium dioxide pellet fragmentation by laser heating, carried out as part of the PhD of Hugo Fuentes [1] in one of the experimental laboratories of the Institute for Research on Nuclear Energy Systems for Low-Carbon Energy Production (IRESNE) at CEA Cadarache (DEC/SA3E/LAMIR). This heating technique reproduces temperature gradients representative of reactor conditions. For each test, films showing the evolution of cracks and surface temperature changes in the pellet are available.
These films will be analyzed by digital image correlation (DIC) [3] using an in-house software tool to determine optimal boundary conditions for the numerical simulations and extract relevant data for model validation. The experiments will then be modeled using gradient damage models developed in the PhD theses of David Siedel and Pedro Nava Soto [2]. Based on the results obtained, the PhD candidate will be able to optimize and/or adapt the setup to study other operating conditions and conduct a new experimental campaign.
The PhD student will work in close collaboration between a simulation laboratory and an experimental laboratory within the IRESNE Institute at CEA Cadarache. The proposed work is open-ended and may be promoted through participation in national or international conferences and the publication of scientific articles in high-impact journals.
References
[1] Fuentes, Hugo, Doualle, Thomas, Colin, Christian, Socié, Adrien, Helfer, Thomas, Gallais, Laurent, and Lebon, Frédéric. Numerical and experimental simulation of nuclear fuel fragmentation via laser heating of ceramics. In: Proceedings of Top Fuel 2024, Grenoble, 29 September 2024.
[2] Nava Soto, Pedro, Fandeur, Olivier, Siedel, David, Helfer, Thomas, and Besson, Jacques. Description of thermal shocks using micromorphic damage gradient models. European Solid Mechanics Conference, Lyon, 2025.
[3] Castelier Etienne, Rohmer E., Martin E., Humez B. Utilisation de la dimension temporelle pour ameliorer la
correlation d'images. 20 eme Congres Francais de Mecanique, 2011.
Development of a dosimeter based on the capture of xenon in a zeolite
Reactor dosimetry makes possible to characterize the neutron spectrum (neutron energy distribution) and to determine the neutron fluence received during irradiation for monitoring the embrittlement of materials. This technique relies on analyzing the radioactivity of irradiated dosimeters, made of pure metals or alloys of known compositions, some isotopes of which undergo activation or fission reactions.
There are numerous dosimeters sensitive to 2 MeV, a few between 1 MeV and 2 MeV, but Zr is the only one suitable for the energy range between 1 keV and 1 MeV. Moreover, few dosimeters respond with a threshold close to 1 MeV in moderate-flux R&D reactors. The only one practically usable, Rh, has a half-life < 1 h, and its measurement relies solely on highly self-absorbed X-rays, requiring very thin dosimeters and complicating measurements. There is therefore a real need to develop a dosimeter capable of responding between 1 keV and 1 MeV.
In this context, Xe not only exhibits an interesting reaction already identified between 1 keV and 1 MeV, but also has two reactions close to 1 MeV producing two nuclides with half-lives of about ten days, well suited to the irradiation cycles of the upcoming high-flux experimental reactor at CEA: the Jules Horowitz Reactor (JHR).
The main idea of this thesis topic would be to use adsorbent materials to trap a sufficient mass of Xe in a reduced volume. Some commercial zeolites can now trap up to 30% by weight of Xe when exposed to only 1 bar of Xe at room temperature.
The thesis will consist of producing a Xe dosimeter trapped on a zeolite at CNRS MADIREL (frequent trips to the Saint Jérôme campus in Marseille in the first year) as well as a simplified Xe-filled chamber manufactured in in the workshops of our laboratory. The common irradiation of a dosimeter and a chamber in a reactor such as CABRI in Cadarache will allow the evaluation of the self-absorption factors by the zeolite of the gamma lines emitted by the isotopes of interest, verification of their measurability with the MADERE platform of our laboratory, as well as assessment of the ageing of zeolites under strong neutron irradiation. The dosimeter will then be tested at higher neutron flux, for example in the TRIGA reactor at JSI (one-week trip to Slovenia to be expected), through the uninterrupted CEA-JSI collaboration since 2008, in order to qualify this dosimeter for JHR.
By acquiring expertise in the field of nuclear measurement, the future PhD graduate will be well prepared for professional integration into major French and international research organizations, or in nuclear companies.
Experimental study of the behavior of fission gases in Fast Neutron Reactor fuels irradiated at low power.
With the emergence of new start-ups in the nuclear field, it is essential to extend the validation basis for Fast Neutron Reactor (FNR) fuel performance codes to lower linear power operating regimes, an area that has yet to be fully explored.
Given the lower temperatures reached in the fuel, the microstructure induced by irradiation is completely different from what is typically observed at higher linear power (formation of a central hole, columnar grains, etc.). These lower operating temperatures also lead to a decrease in fission gas release (FGR), which can cause significant gas swelling of the fuel. At the same time, low operating temperatures can also lead to an increase in the density of defects (dislocations) induced during irradiation (lower defect annealing efficiency), resulting in an indirect increase in fuel swelling.
It is therefore important to determine the density of dislocations in the fuel, as their ambivalent role shows that they can slow down the release of gases by trapping them and promoting their storage in intragranular bubbles, while also facilitating their migration if they form a connected network.
In order to improve our understanding of the phenomena involved and the models of fuel swelling under irradiation, it is essential to have experimental results such as the densities and sizes of Fission Gas (FG) bubbles and the densities of dislocations in these operating regimes.
The Laboratory for Fuel Characterization and Property Studies (LCPC) within the Research Institute for Nuclear Systems for Low-Carbon Energy Production (IRESNE), to which the PhD student will be affiliated, is equipped with state-of-the-art instruments recently acquired (TEM, SEM-FIB, SIMS, EPMA, XRD) for the study of irradiated materials allowing him to develop advanced experimental skills within the specific context of a Basic Nuclear Installation. This work will be carried out in close collaboration with the teams responsible for developing the multiphysics scientific computing tools of the PLEIADES software platform. It is clear that the skills acquired during the thesis will be valuable in a future career in both academia and industry. The doctoral student will also be able to promote their work to the international academic community and the industrial world through oral presentations and peer-reviewed articles.
Acoustic imaging on irradiated fuel elements : from implementation to interpretation in terms of Metal/Ceramic interface
To improve the flexibility of civil nuclear reactors, many research programs are conducted by CEA in support of the French nuclear plants operator EDF and fuel fabricant FRAMATOME, specifically concerning the behaviour of fuel elements under irradiation.
The fuel elements consist of a metallic cladding and ceramic pellets. In case of power variations, the presence of a gap between the cladding and the pellets, and the bonding between them in case of contact, are fundamental for the mechanical strength of the fuel element.
To complete the current characterizations after irradiation of the pellet-cladding interface, the feasibility of a non-destructive method based on acoustic imaging has been studied and validated.
As a continuation of this first study, the objective of the thesis is to complete instrumentation of an operating measurement bench with the acoustic measurement chain. This bench is located in a cell which is dedicated to examinations of irradiated fuel elements.
The thesis work includes preparation and implementation of a qualification protocol of the acoustic chain, with images acquisitions on irradiated fuel elements. Acoustic signals processing will be developed to correct the effects of the external corrosion layer. Final expected results are images representing axial and azimuthal localization of the contact or gap between the cladding and the pellets, and the fraction of the bonding zones.
The PhD student will be based within IRESNE, an Institute of the CEA localized in Cadarache (in the south of France) which is specialized in the Research for Nuclear Systems for Low Carbon Energy Production. The work will take place in a nuclear installation which is equipped with various tools for multiscale characterization of the irradiated fuel from nuclear or experimental reactors.
This multidisciplinary work will be carried out in collaboration with a team from IES (Institute for Electronic and Systems - CNRS - Montpellier). This team is specialized in acoustic developments from probes to complete imaging systems.
Thanks to the resources and expertise of the two entities CEA and IES, the student will acquire solid skills in the fields of modeling, instrumentation and metrology. Results will be valorised in international publications and communications.
Mechanical behavior of fourth-generation Li-Ion cells, study at the microstructure scale
Competition to increase the energy density of Li-Ion batteries is leading to the consideration of batteries with solid rather than liquid electrolytes. In this regard, sulfur-based electrolytes such as argyrodites are of great interest due to their high ionic conductivity and mechanical properties allowing a simpler manufacturing. Under the effect of lithiation/delithiation cycles, the silicium active particles embedded within this solid electrolyte cause volume variations that can damage the electrode and reduced its lifetime. This is why batteries with solid sulfide electrolytes only cycle properly when kept under pressure. The objective of this thesis is therefore to model these charge-discharge phases pf the battery at the microstructure scale representative of these new solid electrolyte electrodes. At the silicon particle scale, the work will consist of formulating a lithiation-delithiation model based on previous theoretical work and by comparison with available experimental data. Then, 3D models of electrode microstructures consisting of an argyrodite-type solid electrolyte and silicon particles will be established based on existing characterizations (SEM images). Finally, the microscopic mechanical model of lithiation-delithiation will be integrated on these microstructure models, studying in particular the effects of external mechanical loading on the intensity of mechanical interactions at the microstructure scale and the potential locations of damage. These simulation results will be compared with available measurements (macroscopic and local deformation measurements).
These studies will be carried out at CEA Cadarache within the Institute for Research on Nuclear Systems for Low-Carbon Energy Production (IRESNE), in close collaboration with the teams of the Laboratory for Innovation in New Energy Technologies and Nanomaterials (LITEN) at CEA Grenoble.
This framework will allow the PhD student to evolve in a stimulating scientific environment and to promote their research work both in France and abroad through conferences and publications in peer-reviewed journals.