Atomic scale modeling of radiation induced segregation in Zr(Nb) alloys
Nuclear fuel cladding made of zirconium alloys constitute the first safety barrier in pressurized water reactors. The microstructure of these alloys not only controls mechanical properties, but also phenomenon such as corrosion or growth under irradiation. Enabling a more flexible use of nuclear energy in the mix while maintaining the structural integrity of fuel cladding under both operating and accidental conditions, we must understand the detailed mechanisms of microstructure evolution under irradiation. Numerous studies point toward the center part played by Nb in such microstructural evolution. For instance, diffusion flux coupling between solutes (Nb) and point defect created by irradiation gives rise to local Nb segregation, as well as precipitates which are not seen in non-irradiated samples. Atomic scale modeling brings in information that complements that obtained from experimental observations, allowing to confirm or disprove the evolution scenarios found in the literature. The aim of this Ph.D. work is to use the tools which have been developed to study irradiation effects in ferritic steels, and apply them to Zr alloys, with a focus on radiation induced segregation. Electronic structure calculations in the density functional theory approximation will be used to study the interactions between niobium atoms and point defects. From this data, we are able to compute transport coefficients, from which we can discuss quantitatively solute/point defect flux coupling and radiation induced segregation effects.
Experimental study of Nanometric-Scale Microstructural and Microchemical Evolution in Zirconium Alloys under Irradiation
Zirconium-based alloys are used as fuel cladding material for pressurized water reactors due to their low thermal neutron absorption cross-section, good mechanical strength, and excellent corrosion resistance. However, despite decades of research, the mechanisms governing the evolution of their microstructure and microchemistry under irradiation are still not fully understood. These phenomena strongly influence the in-reactor performance and lifetime of the materials
Neutron irradiation generates displacement cascades in crystalline material, producing large numbers of point defects (vacancies and interstitials) that can cluster and drive atomic redistribution. The high concentration of point defects promotes radiation-induced segregation and precipitation of alloying elements. In Zr1%Nb alloys, irradiation leads to the unexpected formation of high density Nb-rich nanoprecipitates. This phenomenon has significant implications on the macroscopic properties of the material, notably its post-irradiation creep and corrosion behavior in reactors.
This PhD project aims to elucidate the mechanisms responsible for the precipitation of Nb-rich nanoprecipitates under irradiation. A Zr1%Nb alloy will be irradiated with ions at various doses and temperatures, followed by advanced nanoscale characterization using transmission electron microscopy (TEM) and atom probe tomography (APT). These complementary techniques will provide detailed information on the spatial distribution of alloying elements and the nature of point defect clusters at the atomic scale. Based on these results, a comprehensive mechanism for irradiation-induced precipitation will be proposed, and its implications for the macroscopic properties and in-reactor performance of zirconium alloys will be assessed. By improving the fundamental understanding of irradiation-induced microstructural evolution, this research aims to contribute to the development of more radiation-resistant zirconium alloys for nuclear applications.
Experimental study and numerical simulation of deformation mechanisms and mechanical behavior of zirconium alloys after irradiation
The cladding of nuclear fuel rods used in Pressurized Water Reactor, made of zirconium alloys, is the first barrier for the confinement of radioactive nuclei. In-reactor, the cladding is subjected to radiation damage resulting in a change of its mechanical properties. After in-reactor use, the fuel rods are transported and stored. During these various steps, the radiation damage is partially annealed, leading to another evolution of the material properties. All these evolutions are still not well understood.
The objective of this PhD work is to better understand the deformation mechanisms and the mechanical behavior of zirconium alloys after irradiation, and after a partial annealing of the radiation damage. This will help to better predict the behavior of the cladding tube after use and thus guaranty the confinement of radioactive nuclei.
In order to achieve this goal, original experimental methods and advanced numerical simulations will be used. Ion irradiations will be conducted in order to reproduce the radiation damage. Heat treatments will then be done on the specimens after irradiation. Small tensile samples will be strained in situ, after annealing, inside a transmission electron microscope, at room temperature or at high temperature. Deformation mechanisms observed at nanometer scale and in real time will be simulated using dislocation dynamics, at the same time and space scales. Large scale dislocation dynamics simulations will then be conducted in order to deduce the single-crystal behavior of the material. In parallel with this study at the nanometric scale, a study will also be conducted at the micrometric scale. Nanoindentation and micropillar compression tests will be performed to assess the mechanical behavior after irradiation and annealing. The results of mechanical tests will be compared with large-scale dislocation dynamics numerical simulations.
This study will allow a better understanding of the special behavior of zirconium alloys after irradiation and annealing and then help to develop physically based predictive models. In a future prospect, this work will contribute to improve the safety during transport and storage of spent nuclear fuel.
Numerical modelling of large ductile crack progagation and assessment of margins comparing to engineering approach
Predicting failure modes in metal structures is an essential step in analyzing the performance of industrial components where mechanical elements are subjected to significant stress (e.g., nuclear power plant components, pipelines, aircraft structural elements, etc.). To perform such analyses, it is essential to correctly simulate the behavior of a defect in ductile conditions, i.e., in the presence of significant plastic deformation before and during propagation.
Predictive numerical simulation of ductile tearing remains an open scientific and technical issue despite significant progress made in recent years. The so-called local approach to fracture, notably the Gurson model (and its modified version GTN), is widely used to model ductile tearing. However, its use has limitations: significant computation time, simulation stoppage due to the presence of completely damaged elements in the model, and non-convergence of the result when the mesh size is reduced.
The aim of this thesis is to develop the ductile tear simulation model used at LISN so that it can be applied to large crack propagation on complex structures. It also aims to compare the results obtained with engineering methods that are simpler to implement.
Effect of water radiolysis on the hydrogen absorption flux by austenitic stainless steels in the core of a nuclear pressurized water reactor
In pressurized water nuclear reactors, the core components are exposed to both corrosion in the primary medium, pressurized water at around 150 bar and 300°C, and to neutron flux. The stainless steels in the core are damaged by a combination of neutron bombardment and corrosion. In addition, radiolysis of the water can have an impact on the mechanisms and kinetics of corrosion, the reactivity of the medium and, a priori, the mechanisms and kinetics of hydrogen absorption by these materials. This last point, which remains unexplored, may prove problematic, as hydrogen in solid solution in steel can lead to changes in (and degradation of) the mechanical properties of the steel or induce premature cracking of the part. The pioneering work developed in this highly experimental thesis will focus on the impact of radiolysis phenomena on the mechanisms and kinetics of corrosion and, above all, hydrogen pick-up in 316L stainless steel exposed to the primary environment under irradiation. Hydrogen will be traced by deuterium, and neutron irradiation simulated by electron irradiation on particle accelerators. An existing permeation cell will be modified into a unique setup to allow in operando measurement by mass spectrometry of the deuterium permeation flux through a sample exposed to the simulated primary water under radiolysis conditions. The distribution of hydrogen in the material, as well as the nature of the oxide layers formed, will be analysed in detail using state-of-the-art techniques available at the CEA and in partner laboratories. The doctoral student will ultimately be required to (i) identify the mechanisms involved (corrosion and hydrogen entry), (ii) estimate their kinetics and (iii) model the evolution of hydrogen flux in the steel in connection with radiolysis activity.
Kinetics of segregation and precipitation in Fe-Cr-C alloys under irradiation : coupling magnetic, chemical and elastic effects
Ferritic steels are being considered as structural materials in future fission and fusion nuclear reactors. These alloys have highly original properties, due to the coupling between chemical, magnetic and elastic interactions that affect their thermodynamic properties, the diffusion of chemical species and the diffusion of point defects in the crystal. The aim of the thesis will be to model all of these effects at the atomic scale and to integrate them into Monte Carlo simulations in order to model the segregation and precipitation kinetics under irradiation, phenomena that can degrade their properties in use. The atomic approach is essential for these materials, which are subjected to permanent irradiation and for which the laws of equilibrium thermodynamics no longer apply.
The candidate should have a good background in statistical physics or materials science, and be interested in numerical simulations and computer programming. The thesis will be carried out at CEA Saclay's physical metallurgy laboratory (SRMP), in a research environment with recognised experience in multi-scale modelling of materials, with around fifteen theses and post-doctoral contracts in progress on these topics.
A Master 2 internship on the same subject is proposed for spring 2025 and is highly recommended.
Advanced electrode materials by ALD for ionic devices
This work aims to develop Advanced ultrathin cunductive layers (<10nm) by ALD (Atomic Layer Deposition)for électrodes use(resistivity 100). The other challenge aims to reduce the ALD-based electrode layer thickness less than 5nm while still maintaining the advanced electric properties (resistivity in the mOhm range).
This work covers multiple aspects including inter alia ALD process, ALD precursors, Elementary characterization of intrinsec properties (physico-chemical, morphological and electrochemical) as well as integration on short loop 3D devices.
Development of a modeling tool for corrosion in porous media
"
In a context where material durability is essential for the safety of infrastructures and the promotion of a sustainable energy transition, mastering corrosion phenomena represents a major challenge for key sectors such as decarbonized energy transport through buried pipelines and civil engineering (hydrogen, nuclear, underground infrastructures). The CORPORE project addresses this issue by proposing the development of advanced numerical simulation models to study corrosion in porous media using COMSOL Multiphysics.
The main scientific and technological objective is to establish an integrated multiphysics modeling approach for the electrochemical and transport mechanisms within porous materials: studying the coupled influence of chemistry, pore network properties, and material–environment interactions on the initiation and propagation of corrosion.
This approach will help optimize anticorrosion protection strategies, reduce maintenance costs, and extend the service life of structures. From a state-of-the-art perspective, most current models focus on homogeneous media and compartmentalized approaches. Our project stands out by integrating a multi-scale mechanistic modeling framework combined with the use of archaeological data for long-term validation.
"
Chemical and mechanical properties of N-A-S-H aluminosilicates of geopolymer
Management of low- and medium-level nuclear waste relies primarily on cements, but their limitations with regard to certain types of waste (reactive metals, oil) require the exploration of new, more effective materials. Geopolymers, particularly those composed of hydrated sodium aluminosilicates (Na2O–Al2O3–SiO2–H2O, or N–A–S–H), appear to be a promising alternative thanks to their chemical compatibility with certain types of waste.
However, despite the growing interest in geopolymers, scientific obstacles remain: 1) The available thermodynamic data on N-A-S-H is still incomplete, making it difficult to predict their long-term stability via modeling, 2) The role of their atomic structure in regard to their reactivity remains unclear, and 3) The links between chemical composition (in terms of Si/Al ratio) and mechanical properties are not established, limiting the representativeness of the models created.
By combining experimentation and modeling in order to link atomic structure and properties, this thesis aims to obtain robust and novel data on the chemical and mechanical properties of N-A-S-H. The thesis is organized around three major objectives: 1) determining the impact of N-A-S-H composition on dissolution and establishing thermodynamic solubility constants, 2) characterizing their atomic structure (aluminols, silanols, and hydrated environments) using advanced NMR spectroscopy, and 3) linking their mechanical properties, measured by nanoindentation, to their structure and composition using molecular dynamics modeling.