Implicit/explicit transition for numerical simulation of Fluid-Structure Interaction problems treated by immersed boundary techniques

In many industrial sectors, rapid transient phenomena are involved in accident scenarios. An example in the nuclear industry is the Loss of Primary Coolant Accident, in which an expansion wave propagates through the primary circuit of a Pressurized Water Reactor, potentially vaporizing the primary fluid and causing structural damage. Nowadays, the simulation of these fast transient phenomena relies mainly on "explicit" time integration algorithms, as they enable robust and efficient treatment of these problems, which are generally highly non-linear. Unfortunately, because of the stability constraints imposed on time steps, these approaches struggle to calculate steady-state regimes. Faced with this difficulty, in many cases, the kinematic quantities and internal stresses of the steady state of the system under consideration at the time of occurrence of the simulated transient phenomenon are neglected.

Furthermore, the applications in question involve solid structures interacting with the fluid, undergoing large-scale deformation and possibly fragmenting. A immersed boundary technique known as MBM (Mediating Body Method [1]) recently developed at the CEA enables structures with complex geometries and/or undergoing large deformations to be processed efficiently and robustly. However, this coupling between fluid and solid structure has only been considered in the context of "fast" transient phenomena treated by "explicit" time integrators.

The final objective of the proposed thesis is to carry out a nominal regime calculation followed by a transient calculation in a context of fluid/immersed-structure interaction. The transient phase of the calculation is necessarily based on "explicit" time integration and involves the MBM fluid/structure interaction technique. In order to minimize numerical disturbances during the transition between nominal and transient regimes, the calculation of the nominal regime should be based on the same numerical model as the transient calculation, and therefore also rely on an adaptation of the MBM method.

Recent work defined an efficient and robust strategy for calculating steady states for compressible flows, based on "implicit" time integration. However, although generic, this approach has so far only been tested in the case of perfect gases, and in the absence of viscosity.

On the basis of this initial work, the main technical challenges of this thesis are 1) to validate and possibly adapt the methodology for more complex fluids (in particular water), 2) to introduce and adapt the MBM method for fluid-structure interaction in this steady-state calculation strategy, 3) to introduce fluid viscosity, in particular within the framework of the MBM method initially developed for non-viscous fluids. At the end of this work, implicit/explicit transition demonstration calculations with fluid-structure interaction will be implemented and analyzed.

An internship can be arranged in preparation for thesis work, depending on the candidate's wishes.

[1] Jamond, O., & Beccantini, A. (2019). An embedded boundary method for an inviscid compressible flow coupled to deformable thin structures: The mediating body method. International Journal for Numerical Methods in Engineering, 119(5), 305-333.

Improving phase field damage models - Application to vitroceramic materials subjected to self-irradiation

The vitrification of nuclear waste is a solution currently adopted for the storage of nuclear waste. The vitroceramic materials considered for this application consist of a glass matrix and inclusions of crystalline phases. Rich in radioactive elements, these inclusions undergo self-irradiation resulting in their swelling, which may cause cracking of the glass matrix. It is necessary to know the maximum amount of inclusions below which the material does not crack. An experimental study on radioactive materials, produced and monitored over time, is excessively expensive and the development of a numerical approach could make it possible to better target the materials to be studied.
Following Gérald Feugueur's thesis work on the subject, which highlighted the difficulty of current models in dissociating crack initiation and propagation, the main goal is to develop and test an improved phase field model incorporating an elasticity-independent crack nucleation criterion, based on regularized models of softening plasticity. The model will be implemented using the finite element method (FEniCS code) and an alternative method using Fourier transforms (AMITEX code). Following cross-validation, the most efficient implementation will be selected for application to large-scale 3D microstructures. Close exchanges with CEA Marcoule will enable us to characterize the microstructure of the materials, and an experiment currently underway should enable us to analyze the potential cracking of these materials under self-irradiation.

Characterization methods for LMJ’s layered cryogenic targets

Inertial Fusion on the Laser Megajoule facilty requires to form a spherical DT layer at cryogenic temperature. A major topic of interest for fusion experiments is the characterization of the layer quality and thickness. The characterization will be done using two technics : optical shadowgraphy and X-ray phase contrast analysis. A cryostat developed by CEA is already available to work on future target designs and layer characterization.
The objectives of the PhD are to understand and model (theorically and numerically) the physics of the layer observation and to develop the characterization test bench in the cryostat’s environment and the image analysis for the 3D description of the layer.
The student will have to learn to use the cryostat, its command system and its simple actual characterization system. After a bibliography research, he will have to study the physics governing the characterization (multiple reflections, refractions, phase contrast, …) and develop the acquisition and image analysis system allowing the 3D description of the layer using images obtained during experiments with the cryostat. Lastly, the coupling between the command of the cryostat and the characterization will be developed. For all these developments, the student will have access to extensive bibliographical data and the expertise of the host team

Compréhension et modélisation du transport des gaz dans un combustible UO2 présentant plusieurs familles de porosités

Sans objet (candidats français uniquement pour cette thèse)

High-Order Hexahedral Mesh Generation for HPC simulation

Modeling and upscaling of sodium boiling flow within a 4th generation nuclear reactor core

The stabilized boiling in sodium is a subject that has been studied for many years at CEA in order to improve the validation of scientific calculation tools such as CATHARE3. Being able to reproduce properly this phenomena is a key safety related question for liquid metal liquid 4th generation reactors. When an unprotected loss of flow (ULOF) happens in the reactor and the safety measures are not deployed, the coolant can reach saturation, which can ultimately lead to a degradation of the subassembly. In order to avoid this situation, new fuel assembly designs provide negative neutronic feedback as the void fraction is generated. To understand how this void fraction evolves in the sub-assembly (within the rod bundle or the top plenum), the code requires a state of the art sodium modeling in terms of momentum, heat and mass transfer.
To improve the qualification of the CATHARE3 code for such situations, the doctoral student will implement CFD models allowing a better understanding of the boiling mechanisms in sodium-cooled subassemblies. New CFD models, such as large interface modelling, wall boiling, heat and mass exchange at the interface will be applied, yielding detailed information on local variables. Subsequently, this detailed information will be transferred to the 1D system code during an upscaling operation. Once this information is properly gathered and transferred, new models will be developed and implemented into the system code. Finally, these new models will be confronted to experimental data in a validation exercise over the CATHARE code validation database. Ultimately, the aim is to increase the confidence in the CATHARE3 1-D simulation tool for predicting the specific physics of sodium boiling during an unprotected loss of flow transient.
The doctoral student will be based in a research unit on innovative nuclear systems at CEA/IRESNE Cadarache, in a dynamic and international environment. Travel to CEA-Saclay and EDF-Chatou is planned during the thesis, as well as participation in international conferences.

Numerical aand experimental study of nuclear fuel cracking and oxyde-cladding delamination

Sans objet.

Thermohydraulic modelisation of a steam generator and chemical species propagation

Steam generators are essential components of nuclear reactors whose main function is heat exchange. The chemical species present in steam generators are the cause of many parasitic phenomena (clogging, fouling, sludge deposition, etc.). Numerical simulation of species transport, taking into account the migration of chemical species and exchanges between species, both intra- and inter-phase, will allow a better understanding and better management of these problems. Numerical resolution of species transport systems presents real difficulties, in particular the management of the appearance and total disappearance of certain species, high void rates, as well as rapidly excessive calculation times.

While relying on the new code for nuclear components developed at STMF, the thesis will address the following three main scientific issues:
• Upstream, the analysis of numerical methods allowing in particular the management of evanescence, as mentioned above, and thermo-hydraulic modeling at high void rates. For this, we will rely on the PolyMAC and PolyVEF numerical schemes, already implemented in the component code.
• The physical modeling of a steam generator in the new component code, via the addition (in C++) of correlations specific to steam generators, the completion of the state laws already available, etc..
• The determination of the major chemical species to be transported, in order to be able to take into account both thermo-hydraulics and chemistry. The algorithmic coupling between thermo-hydraulics and chemistry, taking into account feedback, being the long-term objective.

While benefiting from the existing parallelization of the component code, the thermo-hydraulic and chemical modeling will be done taking into account the constraints on computation times.

Improving the predictivity of large eddy simulations using machine learning guided by high-fidelity simulations

This thesis aims to explore the application of machine learning techniques to improve turbulence modeling and numerical simulations in fluid mechanics. More specifically, we are interested in the application of artificial neural networks (ANNs) for large eddy simulation. The latter is a modeling approach that focuses on the direct resolution of large turbulent structures, while modeling small scales by a subgrid-scale model. It requires a certain ratio of total kinetic energy to be resolved. However, this ratio may be difficult to achieve for industrial simulations due to the high computational cost, leading to under-resolved simulations. We aim to improve the latter by focusing work along two main axes: 1) Using ANNs to build generic sub-mesh models that outperform analytical models and compensate for coarse spatial discretization; 2) Training ANNs to learn wall models. One of the main challenges is the ability of the new models to generalize correctly in configurations different from those used during training. Thus, taking into account the different sources and quantification of uncertainties plays a vital role in improving the reliability and robustness of machine-learned models.

Topologic optimization of µLED's optical performance

The performance of micro-LEDs (µLEDs) is crucial for micro-displays, a field of expertise at the LITE laboratory within CEA-LETI. However, simulating these components is complex and computationally expensive due to the incoherent nature of light sources and the involved geometries. This limits the ability to effectively explore multi-parameter design spaces.

This thesis proposes to develop an innovative finite element method to accelerate simulations and enable the use of topological optimization. The goal is to produce non-intuitive designs that maximize performance while respecting industrial constraints.

The work is divided into two phases:

Develop a fast and reliable simulation method by incorporating appropriate physical approximations for incoherent sources and significantly reducing computation times.
Design a robust topological optimization framework that includes fabrication constraints to generate immediately realizable designs.
The expected results include optimized designs for micro-displays with enhanced performance and a methodology that can be applied to other photonic devices.

Top