Chemo-mechanical modeling of the coupling between carbonation, rebar corrosion and cracking in cementitious materials

Rebar corrosion is one of the main causes of premature degradation of concrete infrastructures, including in the nuclear sector, where concrete is extensively used in containment structures and waste storage facilities. Carbonation, caused by the penetration of CO2 into the concrete, lowers the pH of the pore solution, promoting rebar corrosion. This corrosion leads to the formation of expansive products that can cause cracking in the material. The proposed thesis work, developed as part of a European collaborative project between CEA Saclay, École des Mines de Paris - PSL, and IRSN, aims to develop a numerical model to simulate these phenomena. The model combines a reactive transport code (Hytec) and a finite element code (Cast3M) to study the local effects of carbonation-induced corrosion on concrete cracking. This project will benefit from parallel experimental work to gather data for parameter identification and model validation. The first part of the research will focus on modeling the carbonation of cementitious materials under unsaturated conditions, while the second part will address the corrosion of rebar caused by the pH drop induced by carbonation. The model will describe the growth of corrosion products and their expansion, inducing stress within the concrete and potential microcracking.
This research project is aimed at a PhD student wishing to develop their skills in materials science, with a strong focus on multi-physical and multi-scale modeling and numerical simulations. The thesis will be carried out principally at CEA Saclay and at École des Mines de Paris – PSL (Fontainebleau).

Improving the predictivity of large eddy simulations using machine learning guided by high-fidelity simulations

This thesis aims to explore the application of machine learning techniques to improve turbulence modeling and numerical simulations in fluid mechanics. More specifically, we are interested in the application of artificial neural networks (ANNs) for large eddy simulation. The latter is a modeling approach that focuses on the direct resolution of large turbulent structures, while modeling small scales by a subgrid-scale model. It requires a certain ratio of total kinetic energy to be resolved. However, this ratio may be difficult to achieve for industrial simulations due to the high computational cost, leading to under-resolved simulations. We aim to improve the latter by focusing work along two main axes: 1) Using ANNs to build generic sub-mesh models that outperform analytical models and compensate for coarse spatial discretization; 2) Training ANNs to learn wall models. One of the main challenges is the ability of the new models to generalize correctly in configurations different from those used during training. Thus, taking into account the different sources and quantification of uncertainties plays a vital role in improving the reliability and robustness of machine-learned models.

cryosorption cryogenic circulators : from proof of concept to experimental validation

Accelerating thermo-mechanical simulations using Neural Networks --- Applications to additive manufacturing and metal forming

In multiple industries, such as metal forming and additive manufacturing, the discrepancy between the desired shape and the shape really obtained is significant, which hinders the development of these manufacturing techniques. This is largely due to the complexity of the thermal and mechanical processes involved, resulting in a high computational simulation time.

The aim of this PhD is to significantly reduce this gap by accelerating thermo-mechanical finite element simulations, particularly through the design of a tailored neural network architecture, leveraging theoretical physical knowledge.

To achieve this, the thesis will benefit from a favorable ecosystem at both the LMS of École Polytechnique and CEA List: internally developed PlastiNN architecture (patent pending), existing mechanical databases, FactoryIA supercomputer, DGX systems, and 3D printing machines. The first step will be to extent the databases already generated from finite element simulations to the thermo-mechanical framework, then adapt the internally developed PlastiNN architecture to these simulations, and finally implement them.

The ultimate goal of the PhD is to demonstrate the acceleration of finite element simulations on real cases: firstly, through the implementation of feedback during metal printing via temperature field measurement to reduce the gap between the desired and manufactured geometry, and secondly, through the development of a forging control tool that achieves the desired geometry from an initial geometry. Both applications will rely on an optimization procedure made feasible by the acceleration of thermo-mechanical simulations.

Modeling and experimental validation of a catalytic reactor and optimization of the process for the production of e-Biofuels

During the past 20 years, « Biomass-to-liquid » processes have considerably grown. They aim at producing a large range of fuels (gasoline, kerozene, diesel, marine diesel oil) by coupling a biomass gazéification into syngaz unit (CO+CO2+H2 mixture) and a Fischer-Tropsch (FT) synthesis unit. Many demonstration pilots have been operated within Europe. Nevertheless, the low H/C ratio of bio-based syngaz from gasification requires the recycling of a huge quantity of CO2 at the inlet of gaseification process, which implies complex separation and has a negative impact on the overall valorization of biobased carbon. Moreover, the possibility to realize, in the same reactor, the Reverse Water Gas Shift (RWGS) and Fischer-Tropsch (FT) reaction in the same reactor with promoted iron supported catalysts has been proved (Riedel et al. 1999) and validated in the frame of a CEA project (Panzone, 2019).
Therefore, this concept coupled with the production of hydrogen from renewable electricity opens new opportunities to better valorize the carbon content of biomass.
The PhD is based on the coupled RWGS+FT synthesis in the same catalytic reactor. On the one hand a kinetic model will be developed and implemented in a multi-scale reactor model together with hydrodynamic and thermal phenomena. The model will be validated against experimental data and innovative design will be proposed and simulated. On the other hand, the overall PBtL process will be optimized in order to assess the potential of such a process.

Study and simulation of phase entrainment in mixer-settler batteries

As part of the development of new liquid-liquid extraction separation processes, experimental tests are implemented to demonstrate the recovery of valuable elements sufficiently decontaminated from impurities. These tests are commonly carried out in mixer-settler batteries. However, depending on the operating conditions, these finished products may be contaminated by impurities. This contamination results from the combination of several factors:
-Hydrodynamic: Entrainment in the solvent of non-decanted aqueous drops containing impurities
-Chemical: the impurity separation factor is low (less than 10-3)
-Process: the entrainment of drops is amplified with the increase in the rate (reduction of the residence time of the drops)
This thesis aims to increase the understanding of the different phenomena responsible for these phase entrainments in order to estimate optimal operating parameters and to guarantee a contamination of the finished products below a fixed threshold. The aim will be to develop a macroscopic model to predict the flow rate of non-decanted droplets as a function of the operating conditions in the mixer-settler batteries. It will have to be based on hydrodynamic simulations coupling the resolution of a droplet population balance to a continuous phase flow. A coupling will be carried out between this hydrodynamic model and the PAREX or PAREX+ code to size the process diagrams. The qualification of the proposed models will have to be done by comparisons with experimental measurements (based on previous or future test campaigns).

Development of a digital twin of industrial equipment: coupling chemistry / thermo-hydraulics / corrosion

This PhD subject is part of CEA R&D aimed at developing and improving decarbonized technologies for energy production, in response to climate issues. More specifically, it is part of the spent fuel reprocessing stage used in current nuclear reactors. The simulation of the operation and aging of this equipment is a major challenge for the sustainability of the activities of fuel reprocessing plants.
The objective of the thesis is to respond to these challenges, by developing a modeling of the corrosion of one or more equipments in the plants based on their operation. This will require coupling chemical reaction models (in solution and corrosion) with thermo-hydraulic models. These developments will be carried out using modeling tools developed by the CEA.
By making it possible to simulate the corrosion of equipment, the development of such a model will make it possible to optimize its lifespan (by seeking to optimize its operation, for example) or to accurately estimate (and therefore anticipate) the time needed for its replacement.

Brittle fracture of low alloy steels: sensitivity of mesosegregation regions to quenching and tempering conditions

The pressure vessels of the primary circuit of French nuclear power plants are made by assembling low-alloy steel components, forged from high-tonnage ingots (> 100t) that solidify in a non-uniform manner. The high thickness of the component also implies that the evolution of temperature during post-forging heat treatments vary significantly depending on the position in the thickness of the component. These two effects contribute to producing heterogeneous microstructures that can significantly weaken the material.
The scientific objective of this thesis is to evaluate which elements within the microstructure are responsible, and in what proportion, for increased embrittlement of the material for certain unfavorable heat treatment conditions. Conversely, better identifying the range of heat treatment conditions for which this embrittlement of the material remains contained, for a given initial microstructure, is an objective with high industrial stakes. Several heat treatments have already been applied to coupons from a rejected industrial component before subjecting them to Charpy impact toughness tests, in the field of the brittle to ductile transition of the material. Instrumented mechanical tests will be conducted as well as advanced fractographic and microstructural analyses in order to identify the evolution of the nature of the initiation sites according to the heat treatment conditions. These elements will then be integrated into a local approach to fracture model developed specifically to account for the effects of microstructural variations on the resistance to brittle fracture of low-alloy steels.

Flotation for Li-ion active materials recycling : limitations and influence of hydrodynamics and interfacial physico-chemistry on their selective separation

Battery recycling is now a major geopolitical, economic and environmental issue for the EU. Graphite, which makes up the anode of Li-ion batteries, is very rarely recycled. It is concentrated in a fraction called blackmass, where it is mixed with metal oxides of high commercial value. This graphite is then considered as an impurity and causes oversizing of hydrometallurgical operations. Since natural graphite is considered critical by EU and in order to reduce the operating and investment costs of hydrometallurgical processes, it is proposed to carry out a pre-treatment step on the blackmass in order to valorize the graphite directly. This stage is carried out by flotation. This process for separating solids suspended in water uses gas in the form of air bubbles to separate the particles according to their difference in wettability and therefore their attachment to the air bubbles. The complexity of the flotation process, linked to the dependence on both the nature of the interfaces and the hydrodynamic conditions, requires in-depth understanding of the mechanisms involved.
The aim of the proposed project, which follows on from two internal projects, is to identify the mechanisms at work during flotation, using methods of interfaces characterization, stability and rheology of foam fraction, imaging, etc., with a view to improving the performance of the flotation stage and extending it to other recycling challenges.
The PhD thesis work will be carried out at the Laboratoire des technologies de Valorisation des procédés et des Matériaux pour les ENR (LVME) at CEA Grenoble and in close collaboration with the Laboratoire de Caractérisations Avancées pour l'Energie (LCAE) at CEA Grenoble, the Laboratoire des Procédés Supercritiques et décontamination (LPSD) and the Laboratoire de développement des procédés de recyclage et valorisation pour les systèmes énergétiques décarbonnés (LRVE) at CEA Marcoule (30). In parallel with the experimental work, the models and mechanisms involved and the associated technical solutions will have to be proposed.
The scientific and industrial interest of the subject guarantees that the work will be promoted through international communications. After the PhD, you can join one of the best academic or applied research teams, or pursue an R&D career directly in industry.

Numerical simulation of the impact between immersed structures in a compressible liquid using immersed boundary type approaches.

Many industrial systems involve structures immersed in dense fluids. Examples include the submarine industry, or, more specifically, certain 4th generation nuclear reactors using coolant fluids such as sodium or salt mixtures. The effect of the interaction of the surrounding fluid on the contact forces between structures is a phenomenon of primary importance, particularly during accidental transient scenarios that can generate large displacements of structures whose residual integrity must be demonstrated for safety purposes.

In the context of this thesis, we are particularly interested in modeling the rapid impact of a structural fragment immersed in a fluid against a wall, resulting, for example, from an explosive phenomenon in a nuclear reactor vessel cooled by sodium. In this context, the sodium, modeled as a compressible fluid, is treated numerically using a volume-finite approach. The reactor's internal structures are treated using a finite-element approach. In order to deal with large structural displacements and possible fracturing, “immersed boundary” techniques are used for fluid-structure interaction.

The aim of this thesis is to define an innovative numerical method to better simulate the fluid film between two structures that come into contact in this context. Initially, we will focus on identifying the physical characteristics of the flow at the level of the fluid film (compressibility, viscosity, etc.) that have the greatest influence on the kinematics of the structures. Secondly, the main challenge of this thesis will be to improve current numerical methods in order to represent the flow characteristics of the fluid film as accurately as possible.

The proposed thesis will be carried out at CEA Saclay, in close collaboration with the EM2C laboratory at CentraleSupélec, within the environment of the Université Paris-Saclay. The PhD student will be immersed in a team with recognized expertise in transient simulations of fluid-structure interaction.

Top