Electro-optical probes design for impulse fields characterization

Characterization methods for LMJ’s layered cryogenic targets

Inertial Fusion on the Laser Megajoule facilty requires to form a spherical DT layer at cryogenic temperature. A major topic of interest for fusion experiments is the characterization of the layer quality and thickness. The characterization will be done using two technics : optical shadowgraphy and X-ray phase contrast analysis. A cryostat developed by CEA is already available to work on future target designs and layer characterization.
The objectives of the PhD are to understand and model (theorically and numerically) the physics of the layer observation and to develop the characterization test bench in the cryostat’s environment and the image analysis for the 3D description of the layer.
The student will have to learn to use the cryostat, its command system and its simple actual characterization system. After a bibliography research, he will have to study the physics governing the characterization (multiple reflections, refractions, phase contrast, …) and develop the acquisition and image analysis system allowing the 3D description of the layer using images obtained during experiments with the cryostat. Lastly, the coupling between the command of the cryostat and the characterization will be developed. For all these developments, the student will have access to extensive bibliographical data and the expertise of the host team

Scatterometry measurement of the exposure focal length of photolithography tools

Since the late 2000s with the advent of 45nm CMOS nodes, the control of critical dimensions (CD) of the structures in the photolithography stage has become critical to the reliability of printed circuit boards. Optical photolithography remains the most economical and widespread technique for high volume production in the semiconductor industry. For this type of equipment, manufacturers have focused on increasing the numerical aperture of the exposure lens, reducing sources of optical aberrations and on metrology to ensure efficient monitoring of their machines. These developments were possible at the expense of the depth of field of the exposure. To avoid altering the images transferred to the photosensitive resins, and ultimately have a device failure, it is essential to give a value as accurate and precise as possible of this size. To meet the growing needs of process control and lithography tools required by the most advanced technologies, metrology techniques based on analysis of reflected signals are massively used. Although this methodology is well suited to current CMOS technologies (CMOS14nm and earlier), it is unlikely to address more advanced technologies, so other techniques must emerge, such as techniques based on the analysis of the diffracted signal (scatterometry).

Propagation of uncertainties for nuclear electromagnetic pulses measurement

Top