Systematic study of the neutron scattering reactions on structural materials of interest for nuclear reactor applications
Elastic and inelastic scattering reactions on structural materials have a significant impact on the simulation of neutron transport. The nuclear data of structural materials of interest for nuclear reactors and criticality studies must be known with good precision over a wide incident neutron energy range, from a few tens of meV to several MeV. The thesis proposal aims to carry out a systematic study of the scattering reactions above the resolved resonance range up to 5 MeV. In this energy range, neither the R-Matrix formalism nor the statistical Hauser-Feshbach model are valid for structural materials. A new formalism will be developed by using high-resolution measurements of the scattering angular distributions. This work will focus more precisely on measurements already done at the JRC-Geel facility (sodium [1], iron [2]) and will be extended to other elements studied within the framework of the IAEA/INDEN project, such as copper, chromium and nickel. As part of this thesis, the experimental database will be complemented by new measurements on the copper isotopes (Cu63 and Cu65). The measurements will be carried out at JRC Geel GELINA facility with the ELISA detector. Concerning the copper isotopes, integral benchmarks from the ICSBEP database revealed several issues in the nuclear data libraries, which provide contradictory integral feedbacks on the nuclear data of U235. For example, the ZEUS benchmarks, which is routinely used to study the capture cross section of U235 in the fast neutron energy range, are very sensitive to the nuclear data of copper. This type of benchmark will provide an ideal framework for quantifying the impact of any new formalism developed to evaluate the nuclear data of structural materials.
This study will allow the PhD student to develop skills in experimental and theoretical nuclear physics, as well as in neutron physics. The results will be communicated to the JEFF working group of the Nuclear Energy Agency (OCDE/AEN).
[1] P. Archier, Contribution à l’amélioration des données nucléaires neutroniques du sodium pour le calcul des réacteurs de génération IV, Thèse, Université de Grenoble, 2011.
[2] G. Gkatis, Study of neutron induced reaction cross sections on Fe isotopes at the GELINA facility relevant to reactor applications, Thèse, Université Aix-Marseille, 2024.
Modeling of nuclear charge polarization as part of fission yield evaluation: applications to actinides of interest to the nuclear fuel cycle
Nuclear data is crucial for civil nuclear energy applications, being the bridge between the micoscopic properties of nuclei and the “macroscopic good values” needed for cycle and reactor physics studies. The laboratory of physics studies at CEA/IRESNE Cadarache is involved in the evaluation of these nuclear physics observables, in the framework of the JEFF Group and the Coordinated Research Project (CRP) of IAEA. The recent development of a new methodology for thermal neutrons induced fission product yield evaluation (fission product yields after prompt neutron emission) has improved the accuracy of the evaluations proposed for the JEFF-4.0 Library, together with their covariance matrix. To extend the assessments of fission yields induced by thermal neutrons to the fast neutron spectrum, it is necessary to develop a coupling of current evaluation tools with fission fragment yield models (before prompt neutron emission). This coupling is essential to extrapolate the actual studies on thermal fission of 235U and 239Pu to less experimentally known nuclei (241Pu, 241Am, 245Cm) or to study the incident neutron energy dependence of fission yields. One of the essential missing components is the description of the nuclear charge distribution (Z) as a function of the mass of the fission fragments and the incident neutron energy. These distributions are characterized by a key parameter: the charge polarization. This polarization reflects an excess (respectively deficiency) of proton in light (respectively heavy) fission fragments compared to the average charge density of the fissioning nucleus. If this quantity has been measured for the 235U(nth,f) reaction, it is incomplete for other neutron energies or other fissioning systems. The perspectives of this subject concern as much the impact of these new evaluations on the key quantities for electronuclear applications as well as the validation of the fission mechanisms described by microscopic fission models.
Microscopic nuclear structure models to study de-excitation process in nuclear fission
The FIFRELIN code is being developed at CEA/IRESNE Cadarache in order to provide a detailed description of the fission process and to calculate all relevant fission observables accurately. The code heavily resides on the detailed knowledge of the underlying structure of the nuclei involved in the post-fission de-excitation process. When possible, the code relies on nuclear structure databases such as RIPL-3 that provide valuable information on nuclear level schemes, branching ratios and other critical nuclear properties. Unfortunately, not all these quantities have been measured, nuclear models are therefore used instead.
The development of state-of-the-art nuclear models is the task of the newly-formed nuclear theory group at Cadarache, whose main expertise is the implementation of nuclear many-body solvers based on effective nucleon-nucleon interactions.
The goal of this thesis is to quantify the impact of the E1/M1 and E2/M2 strength functions on fission observables. Currently, this quantity is estimated using simple models such as the generalized Lorentzian. The doctoral student will be tasked with replacing these models by fully microscopic ones based on effective nucleon-nucleon interaction via QRPA-type techniques. A preliminary study shows that the use of macroscopic (generalized Lorentzian) or microscopic (QRPA) has a non-negligible impact on fission observables.
Professional perspectives for the student include academic research as well as theoretical and applied nuclear R&D.
Experimental and theoretical studies of the fission fragment excitation energy and angular momentum generation
The discovery of nuclear fission in 1939 profoundly changed our understanding of nuclear physics. The fission reaction is the splitting of heavy nuclei, such as uranium 235, into two lighter nuclei, together with the release of a large amount of energy. Many years of research have led to the development of nuclear fission models, from which evaluated nuclear data files are derived. These files are essential inputs to reactor simulations; yet, their quality needs to be improved.
This PhD thesis aims to study the generation of angular momentum and the excitation energy of fission fragments from both experimental and theoretical standpoints. These studies will not only improve our understanding of the underlying process and our models, but also enhance the predictive power of simulation tools, particularly those used to predict gamma heating in reactors. Part of the work will involve finalizing the analysis of data acquired as part of a recent thesis. The student will take part in complementary experimental campaigns at the nuclear reactor of the Institut Laue-Langevin (ILL), using the LOHENGRIN spectrometer to measure isomeric ratios and the kinetic energy distributions of fission fragments.
The doctoral student will be based in a nuclear and reactor physics unit. He/she will develop skills in nuclear physics, data analysis, and computer programming. The programming languages used will be C++ and Python. Professional perspectives include academic research, R&D organisations, nuclear industry, and possibly also data scientist positions.
Building a new effective nuclear interaction model and propagating statistical errors
At the very heart of any « many-body » method used to describe the fundamental properties of an atomic nucleus, we find the effective nucleon-nucleon interaction. Such an interaction should be capable of taking into account the nuclear medium effects. In order to obtain it, one has to use a specific fitting protocol that takes into account a variety of nuclear observables such as radii, masses, the centroids of the giant resonances or the properties of the nuclear equation of state around the saturation density.
A well-known model of the strong interaction is the Gogny model. It is a linear combination of coupling constants and operators, plus a radial form factor of the Gaussian type [1]. The coupling constants are determined via a fitting protocol that typically uses the properties of spherical nuclei such as 40-48Ca, 56Ni, 120Sn and 208Pb.
The primary goal of this thesis is to develop a consistent fitting protocol for a generic Gogny interaction in order to access some basic statistical information, such as the covariance matrix and the uncertainties on the coupling constants, in order to be able to perform a full statistical error propagation on some selected nuclear observables calculated with such an interaction [2].
After having analysed the relations between the model parameters and identified their relative importance on how well observables are reproduced, the PhD candidate will explore the possibility of modifying some terms of the interaction itself such as the inclusion of a real three-body term or beyond mean-field effects.
The PhD candidate will work within a nuclear physics group at CEA/IRESNE Cadarache. The work will be done in close collaboration with CEA/DIF. Employment perspectives are in academic research and nuclear R&D labs.
[1] D. Davesne et al. "Infinite matter properties and zero-range limit of non-relativistic finite-range interactions." Annals of Physics 375 (2016): 288-312.
[2] T. Haverinen and M. Kortelainen. "Uncertainty propagation within the UNEDF models." Journal of Physics G: Nuclear and Particle Physics 44.4 (2017): 044008.
Mapping the tower of nuclear Effective Field Theory
The ability of nuclear models to accurately predict the rich phenomenology emerging in nuclei (whether for fundamental purposes or nuclear data applications) is conditioned by the possibility to construct a systematically improvable theoretical framework, i.e. with controlled approximations and estimation of associated uncertainties and biases. This is the goal of so called ab initio methods, which rely on two steps:
1 - The construction of an inter-nucleon interaction in adequation with the underlying theory (quantum chromodynamics) and adjusted in small systems, following effective field theory paradigm.
2 - The resolution of nuclear many-body problem to a given accuracy (for structure or reactions observables). This provides predictions in all nuclei of interest and includes the uncertainty propagation stemming from the interaction model up to nuclear data predictions.
This PhD thesis mostly deals with Step 1. The goal of the thesis is to construct a family of ab initio interactions by developing a new adjustment procedure of the low energy constants (including the evaluation of covariances for sensitivity analysis). The adjustment will include structure data but also reaction observables in light systems. This will open the door to a new evaluation of p+n->d+gamma cross sections (which have large uncertainties despite their importance for neutronics applications) in the context of state-of-the-art effective fields theories.
The thesis will be done in collaboration between CEA/IRESNE (Cadarache) and IJCLab (Orsay), the PhD student will spend 18 months in each laboratories. Professional perspectives are academic research and R&D labs in nuclear physics.
Study of radiative decay of the nucleus using a technic like Oslo-method
Radiative neutron capture is a nuclear reaction forming a compound nucleus which decays by emitting gamma-rays at excitation energy around the neutron binding energy. This well-known reaction which we known how to accurately measure its cross section at low incident neutron energies for most stable and few unstable nuclei close the stability valley, remains difficult to measure for exotic nuclei like fission fragments. Nuclear reaction models based essentially on stable nuclei, also struggle to provide reliable predictions of cross sections for these exotic nuclei. However, in the recent years, progress made related to the models and the measurements for the radiative capture show that significant improvements in including microscopic ingredients studies. These micoscopic ingredients: gamma strength function and nuclear level density, remain accesible to the experiment. These ingredients which respectively manage the way of how the gamma cascade occurs and the nuclear structure at high excitation energy can also be measured and calculated to be compared and suggest ways to improve the predictability of models. This kind of improvements have a direct impact for instance on the cross sections for these exotic nuclei which are produced in the stellar nucleosynthesis. The subject of thie thesis is to measure these quantities for a nucleus involved in the nucleosythesis using a new setup called SFyNCS.
Nuclear reactions induced by light anti-ions - contribution of the INCL model
The interaction of an antiparticle with an atomic nucleus is a type of reaction that needs to be simulated in order to answer fundamental questions. Examples include the PANDA (FAIR) collaboration with antiproton beams of the order of GeV, which plans to study nucleon-hyperon interactions, as well as the neutron skin by producing hyperons and antihyperons. This same neutron skin is also studied with antiprotons at rest in the PUMA experiment (AD - Cern). At the same site, we are collaborating with the ASACUSA experiment to study the production of charged particles. To respond to those studies, our INCL nuclear reaction code has been extended to antiprotons (thesis by D. Zharenov, defended at the end of 2023). Beyond the antiproton there are antideuterons and antiHe-3. These antiparticles are of more recent interest, notably with the GAPS (General AntiParticle Spectrometer) experiment, which aims to measure the fluxes of these particles in cosmic rays. The idea is to highlight dark matter, of which these particles are thought to be decay products, and whose measured quantity should emerge more easily from the astrophysical background noise than in the case of antiprotons. The proposed subject is therefore the implementation of light anti-nuclei in INCL with comparisons to experimental data.
Probing Gluon Dynamics in the Proton via the Exclusive Phi Meson Photoproduction with CLAS12
Protons and neutrons are made of partons (quarks and gluons) that interact via the strong force, governed by Quantum Chromodynamics (QCD). While QCD can be computed at high energies, its complexity reveals itself at low energies, requiring experimental inputs to understand nucleon properties like their mass and spin. The experimental extraction of the Generalized Parton Distributions (GPDs), which describe the correlation of the partons longitudinal momenta and transverse positions within nucleons, provide critical insights into these fundamental properties.
This thesis focuses on analyzing data from the CLAS12 detector, an experiment part of Jefferson Lab's research infrastructure, one the 17 National Laboratory in the USA. CLAS12, a 15-meter-long fixed-target detector with large acceptance, is dedicated to hadronic physics, particularly GPDs extraction. The selected student will study the exclusive photoproduction of the phi meson (gamma p->phi p’), which is sensitive to gluon GPDs, still largely unexplored. The student will develop a framework to study this reaction in the leptonic decay channel (phi -> e+e-) and develop a novel Graph Neural Network-based algorithm to enhance the scattered proton detection efficiency.
The thesis will aim at extracting the cross section of the photoproduction of the phi, and interpret it in term of the proton's internal mass distribution. Hosted at the Laboratory of Nucleon Structure (LSN) at CEA/Irfu in Saclay, this project involves international collaboration within the CLAS collaboration, travel to Jefferson Lab for data collection, and presentations at conferences. Proficiency in particle physics, programming (C++/Python), and English is required. Basic knowledge of particle detectors and Mahine Learning is advantageous but not mandatory.
Near-threshold phenomena in nuclear structure and reactions
It is proposed to study the salient effects of coupling between discrete and continuous states near various particle emission thresholds using the shell model in the complex energy plane. This model provides the unitary formulation of a standard shell model within the framework of the open quantum system for the description of well bound, weakly bound and unbound nuclear states.
Recent studies have demonstrated the importance of the residual correlation energy of coupling to the states of the continuum for the understanding of eigenstates, their energy and decay modes, in the vicinity of the reaction channels. This residual energy has not yet been studied in detail. The studies of this thesis will deepen our understanding of the structural effects induced by coupling to the continuum and will provide support for experimental studies at GANIL and elsewhere.