Axion searches in the SuperDAWA experiment with superconducting magnets and microwave radiometry

Axions are hypothetical particles that could both explain a fundamental problem in strong interactions (the conservation of CP symmetry in QCD) and account for a significant fraction of dark matter. Their direct detection is therefore a key challenge in both particle physics and cosmology.

The SuperDAWA experiment, currently under construction at CEA Saclay, uses superconducting magnets and a microwave radiometer placed inside a cryogenic cryostat. This setup aims to convert potential axions into measurable radio waves, with frequencies directly linked to the axion mass.

The proposed PhD will combine numerical modeling with hands-on experimental work. The student will develop a detailed model of the experiment, including magnetic fields, radio signal propagation, and detector electronics, validated step by step with real measurements. Once the experiment is running, the PhD candidate will participate in data-taking campaigns and their analysis.

This project provides a unique opportunity to contribute to a state-of-the-art experiment in experimental physics, with direct implications for the global search for dark matter.

Multi-Probe Cosmological Mega-Analysis of the DESI Survey: Standard and Field-Level Bayesian Inference

The large-scale structure (LSS) of the Universe is probed through multiple observables: the distribution of galaxies, weak lensing of galaxies, and the cosmic microwave background (CMB). Each probe tests gravity on large scales and the effects of dark energy, but their joint analysis provides the best control over nuisance parameters and yields the most precise cosmological constraints.

The DESI spectroscopic survey maps the 3D distribution of galaxies. By the end of its 5-year nominal survey this year, it will have observed 40 million galaxies and quasars — ten times more than previous surveys — over one third of the sky, up to a redshift of z = 4.2. Combining DESI data with CMB and supernova measurements, the collaboration has revealed a potential deviation of dark energy from a cosmological constant.

To fully exploit these data, DESI has launched a “mega-analysis” combining galaxies, weak lensing of galaxies (Euclid, UNIONS, DES, HSC, KIDS) and the CMB (Planck, ACT, SPT), aiming to deliver the most precise constraints ever obtained on dark energy and gravity. The student will play a key role in developing and implementing this multi-probe analysis pipeline.

The standard analysis compresses observations into a power spectrum for cosmological inference, but this approach remains suboptimal. The student will develop an alternative, called field-level analysis, which directly fits the observed density and lensing field, simulated from the initial conditions of the Universe. This constitutes a very high-dimensional Bayesian inference problem, which will be tackled using recent gradient-based samplers and GPU libraries with automatic differentiation. This state-of-the-art method will be validated alongside the standard approach, paving the way for a maximal exploitation of DESI data.

Top