Reducing damage and loading in high aspect ratio III-V etching

The growing demand for III-V semiconductors in high-efficiency photovoltaics, quantum photonics, and advanced imaging technologies requires innovative and cost-effective fabrication methods. This PhD project focuses on developing plasma etching processes for In-based III-V semiconductors to produce high aspect ratio (HAR) structures on large wafers from 100 to 300 mm. The research addresses two key challenges: understanding how etching process windows evolve with material loading and process conditions (physical vs. chemical dominance), and minimizing electrical degradation induced by HAR etching, which is critical for device performance.
These challenges are fundamentally linked to the low volatility of In-based etch byproducts, the need to balance kinetic and thermal energy inputs to enhance etch selectivity, and the management of etch loading effects for large-scale production. The experimental approach will leverage CEA-Leti's state-of-the-art facilities, including the Photonics platform for 2–4-inch wafer processing, which enables masking strategies (hard mask deposition, photolithography) and low-temperature (150°C) etching.
Characterization will involve SEM for etch profile analysis, XPS for surface composition, and TEM-EDX for sidewall quality assessment. Damage evaluation will be performed using near-infrared photoluminescence decay to measure minority carrier lifetime and identify recombination centers. The work aims to develop optimized HAR etching processes (aspect ratios >10, critical dimensions <1 µm) for In-based III-V materials, investigate pulsed plasma techniques to reduce etch-induced damage, and provide insights into defect formation mechanisms to guide process optimization for industrial applications.

Integrated optical functions on microbolometer focal planes for uncooled infrared imaging

Thermal infrared imaging (wavelengths 8-14 µm) is a growing field, particularly in industry, transportation, and environment. It relies on a detection technology, microbolometers, for which CEA-Leti is at the forefront of the global state of the art. Integrating advanced optical functions directly onto the detectors is a very promising approach for improving performance, compactness, and cost in future infrared cameras.
The optical functions under consideration include spectral filtering, polarimetry, wavefront correction, and more. Some aim to enrich the image with information essential for applications such as absolute thermography (temperature and emissivity measurement), identification for automated scene interpretation (machine vision), gas detection, and others.
The proposed work will include the design, fabrication, and electro-optical characterization of functionalized microbolometer arrays. Using 3D electromagnetic simulation tools, the design of these optical functions will take into account the compatibility with our microbolometer technologies and the capabilities of our microfabrication facilities. Fabrication will take place in the CEA-Leti cleanrooms by dedicated personnel, but the candidate will participate in defining and monitoring the work. Finally, optical and electro-optical characterizations will be performed in our laboratory, if necessary with the development of dedicated characterization benches.

Topologic optimization of µLED's optical performance

The performance of micro-LEDs (µLEDs) is crucial for micro-displays, a field of expertise at the LITE laboratory within CEA-LETI. However, simulating these components is complex and computationally expensive due to the incoherent nature of light sources and the involved geometries. This limits the ability to effectively explore multi-parameter design spaces.

This thesis proposes to develop an innovative finite element method to accelerate simulations and enable the use of topological optimization. The goal is to produce non-intuitive designs that maximize performance while respecting industrial constraints.

The work is divided into three phases:

- Develop a fast and reliable simulation method by incorporating appropriate physical approximations for incoherent sources and significantly reducing computation times.
- Design a robust topological optimization framework that includes fabrication constraints to generate immediately realizable designs.
- Realize such a metasurface on an existing shortloop in the laboratory. This part is optional and will be tackled only if we manage to seize an Opportunity to finance the prototype, via the inclusion of the thésis inside the "metasurface
topics" of european or IPCEI projets in the lab .

The expected results include optimized designs for micro-displays with enhanced performance and a methodology that can be applied to other photonic devices and used by other laboratories from DOPT.

Top