Design and integration of microlasers within a silicon photonics platform

For about ten years, the continuous increase in internet traffic has pushed the electrical interconnections of data centers to their limits in terms of bandwidth, density, and consumption. By replacing these electrical links with optical fibers and integrating all the necessary optical functions on a chip to create transmitters-receivers (transceivers), silicon photonics represents a unique opportunity to address these issues. The integration of a light source within a photonic chip is an essential building block for the development of this technology. While many demonstrations rely on the use of external lasers or bonded laser chips, it is the direct heterogeneous fabrication of a laser within the photonic chip that would allow the desired level of performance while limiting costs.
The objective of this thesis is to provide an innovative solution for the management of very short-distance communications (inter-chip, intra-chip) by realizing, on silicon, III-V membrane microlaserswith buried heterostructures. This type of microlasermeets the numerous challenges of very short-distance links thanks to an efficiency/integrabilitycompromise superior to the state of the art of datacomlasers while being compatible with CMOS fabrication lines.
Based on the work carried out during a previous thesis, the PhD student will be responsible for (i) designing the microlasersusing the available digital simulation tools in the laboratory, then (ii) manufacturing these microlasersby relying on the technological platforms of CEA-LETI, and finally (iii) electro-optically characterizing the components. This thesis work will be carried out in collaboration between CEA-LETI and LTM/CNRS and will constitute a strategic brick necessary for future generations of photonic transceivers.

Design and optimization of color routers for image sensors

Color routers represent a promising technology that could revolutionize the field of image sensors. Composed of nanometricstructures called metasurfaces, these devices allow the modification of light propagation to improve the quantum efficiency of pixels. Thanks to recent technical advances, it is now possible to design and manufacture these structures, paving the way for more efficient image sensors.
The thesis topic focuses on the design and optimization of color routers for image sensors. Several research avenues will be explored, such as the implementation of new metasurfacegeometries (`freeform`) or innovative configurations to reduce pixel pitch (0.5µm or 0.6µm). Various optimization methods can be used, such as the adjointmethod, machine learning, or the use of auto-differentiable solvers. The designs must be resilient to the angle of light incidence and expected variations during manufacturing. After this simulation phase, the proposed structures will be manufactured, and the student will have the mission to characterize the chips and analyze the obtained results (quantum efficiency, modulation transfer function...).
This thesis will be co-supervised by STMicroelectronics and CEA LETI in Grenoble. The student will be integrated into the teams of engineer-researchers working on this project. He/she will be led to collaborate with various specialists in various fields such as lithography and optical characterization.
The student's main activities:
- Optical simulation using numerical methods (FDTD, RCWA)
- Development of optimization methodologies for metasurfacedesign (adjointmethod, topological optimization...)
- Electro-optical characterization and analysis of experimental data

Top