Blended positive electrodes in solid-state batteries: Effect of the electrode fabrication process on electrochemistry

The development of cost-effective, high-energy-density solid-state batteries (SSBs) is essential for the large-scale adoption of next-generation energy storage technologies. Among various cathode candidates, LiFePO4 (LFP) and LiFe1??Mn?PO4 (LFMP) offer safety and cost advantages but suffer from low working voltages and limited kinetics compared to Ni-rich layered oxides such as LiNi0.85Mn0.05Co0.1O2 (NMC85). To balance energy density, rate capability, and stability, this PhD project aims to develop blended cathodes combining LFMP and NMC85 in optimized ratios for solid-state configurations employing sulfide electrolytes (Li6PS5Cl). We will investigate how fabrication methods- including slurry-based electrode processing and binder-solvent optimization- affect the electrochemical and structural performance. In-depth operando and in situ characterizations (XRD, Raman, and NMR) will be conducted to elucidate lithium diffusion, phase transition mechanisms, and redox behavior within the blended systems. Electrochemical impedance spectroscopy (EIS) and titration methods will quantify lithium kinetics across various states of charge. By correlating processing conditions, microstructure, and electrochemical behavior, this research seeks to identify optimal cathode compositions and manufacturing strategies for scalable, high-performance SSBs. Ultimately, the project aims to deliver a comprehensive understanding of structure–property relationships in blended cathodes, paving the way for practical solid-state battery technologies with enhanced safety, stability, and cost efficiency.

Multi-modal in situ nuclear magnetic resonance analysis of electrochemical phenomena in commercial battery prototypes

Advancing electrochemical energy storage technologies is impossible without a molecular-level understand-ing of processes as they occur in practical, commercial-type devices. Aspects of the battery design, such as the chemistry and thickness of electrodes, as well as configurations of current collectors and tabs, influence the electronic and ionic current density distributions and determine kinetic limitations of solid-state ion transport. These effects, in turn, modulate the overall battery performance and longevity. For these reasons, optimistic outcomes of conventional ‘coin’ cell tests often do not converge into high-performance commercial cells. Safety concerns associated with high energy density and flammable components of batteries are another subject paramount for conversion from fossil to green energy sources.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) are exceptionally sensitive to the structural environment and dynamics of most elements in active battery materials.
Recently, plug-and-play NMR and surface-scan MRI methods have been introduced. In the context of fun-damental electrochemical research, merging two innovative complementary concepts within one multi-modal (NMR-MRI) device would enable diverse analytical solutions and reliable battery performance metrics for academia and the energy sector.
In this project, an advanced analytical framework for in situ analysis of fundamental phenomena such as sol-id-state ion transport, intercalation and associated phase transitions, metal plating dynamics, electrolyte deg-radation and mechanical defects in commercial Li- and Na-ion batteries under various operational conditions will be developed. A range of multi-modal (NMR-MRI) sensors will be developed and employed for deep analysis of fundamental electrochemical processes in commercial battery cells and small battery packs.

Top