Gyrokinetic modelling of the nonlinear interaction between energetic particle-driven instabilities and microturbulence in tokamak plasmas
Tokamak plasmas are strongly nonlinear systems far from thermodynamic equilibrium, in which instabilities of very different spatial scales coexist, ranging from large-scale macroscopic oscillations to microturbulence. The presence of energetic ions produced by fusion reactions or by auxiliary heating further enhances these instabilities through wave–particle resonances. Microturbulence is responsible for heat and particle transport in the thermal plasma, while instabilities driven by energetic particles can induce their radial transport and, consequently, their losses. Both phenomena degrade the performance of present tokamak plasmas, and possibly also those of burning plasmas such as ITER.
Recent results, however, show that these instabilities, which have long been studied separately, can interact nonlinearly, and that this interaction may lead to an unexpected improvement of plasma confinement.
The objective of this project is to investigate these multiscale interactions using the gyrokinetic code GTC, which is able to simultaneously simulate turbulence and energetic-particle-driven instabilities. This work aims to improve the understanding of the nonlinear mechanisms governing plasma confinement and to identify optimal regimes for future fusion plasmas.
Applications using laser-accelerated relativistic electrons with PETAL
This PhD project focuses on the physics of plasmas generated by ultra-high-power and high-intensity lasers. The work will be carried out at the LMJ facility, using the PETAL laser which operates at intensities exceeding 10¹8 W·cm?² and enables the production of high-energy particles.
The main objective of the thesis is to investigate the generation and acceleration of relativistic electron beams in a gas jet. The potential applications of these beams will be assessed for electron–positron pair production and for electron-beam-based radiography.
The research will combine experimental and numerical approaches. The PhD candidate will take part in experimental campaigns scheduled for 2026–2027, including the implementation of diagnostics and data analysis. In parallel, Particle-In-Cell and Monte Carlo simulations will be performed to support the interpretation of the experimental results.
In a second phase, the thesis will contribute to the qualification of upgrades to the PETAL laser, focusing in particular on secondary sources of electrons, protons, and hard X-ray radiation generated by laser–matter interactions, within the framework of the PETAL-UPGRADE project.
Impact of magnetohydrodynamic on access and dynamics of X-point radiator regimes (XPR)
ITER and future fusion powerplants will need to operate without degrading too much the plasma facing components (PFC) in the divertor, the peripheral element with is dedicated to heat and particle exhaust in tokamaks. In this context, two key factors must be considered: heat fluxes must stay below engineering limits both in stationary conditions and during violent transient events. An operational regime recently developed can satisfy those two constraints: the X-point Radiator (XPR). Experiments on many tokamaks, in particular WEST which has the record plasma duration in this regime (> 40 seconds), have shown that it allowed to drastically reduce heat fluxes on PFCs by converting most of the plasma energy into photons and neutral particles, and that it also was able to mitigate – or even suppress – deleterious magnetohydrodynamic (MHD) edge instabilities known as ELMs (edge localised modes). The mechanisms governing these mitigation and suppression are still poorly understood. Additionally, the XPR itself can become unstable and trigger a disruption, i.e., a sudden loss of plasma confinement cause by global MHD instabilities.
The objectives of this PhD are: (i) understand the physics at play during the interaction XPR-ELMs, and (ii) optimise the access and stability of the XPR regime. To do so, the student will use the 3D non linear MHD code JOREK, the European reference code in the field. The goal is to define the operational limits of a stable XPR with small or no ELMs, and identify the main actuators (quantity and species of injected impurities, plasma geometry).
A participation to experimental campaigns of the WEST tokamak (operated by IRFM at CEA Cadarache) – and of the MAST-U tokamak operated by UKAEA – is also envisaged to confront numerical results and predictions to experimental measurements.
Study of impurity transport in negative and positive triangularity plasmas
Nuclear fusion in a tokamak is a promising source of energy. However, a question arises: which plasma configuration is most likely to produce net energy? In order to contribute to answering this, during this PhD, we will study the impact of magnetic geometry (comparison between positive and negative triangularity) on the collisional and turbulent transport of tungsten (W). The performance of a tokamak strongly depends on the energy confinement it can achieve. The latter degrades significantly due to turbulent transport and radiation (primarily from W). On ITER, the tolerated amount of W in the core of the plasma is about 0.3 micrograms. Experiments have shown that the plasma geometry with negative triangularity (NT) is beneficial for confinement as it significantly reduces turbulent transport. With this geometry, it is possible to reach confinement levels similar to those of the ITER configuration (H-mode in positive triangularity), without the need for a minimum power threshold and without the associated plasma edge relaxations. However, questions remain: what level of W transport is found in NT compared to a positive geometry? What level of radiation can be predicted in future NT reactors? To contribute to answering these questions, during this PhD, we will evaluate the role of triangularity on impurity transport in different scenarios in WEST. The first phase of the work is experimental. Subsequently, the modeling of impurity transport will be carried out using collisional and turbulent models. Collaboration is planned with international plasma experts in NT configurations, with UCSD (United States) and EPFL (Switzerland).
Control of trapped electron mode turbulence with an electron cyclotron resonant source
The performance of a tokamak-type fusion power plant in term of energy gain will be limited by turbulent transport. The instability of trapped electron modes is one of the main instabilities causing turbulence in tokamaks. Furthermore, electron cyclotron resonance heating (ECRH) is the generic heating system in current and future tokamaks. Both physical processes are based on resonant interactions with electrons, in space and velocity. Since heating has the effect of depopulating the resonant interaction zone of its electrons, superimposing its resonance on that of the instability can theoretically lead to a stabilisation of the trapped electron modes.
The objective of the thesis is twofold: (i) to construct scenarios where this mechanism exists and validate it using linear simulations, then (ii) to characterise its effect and quantify its effectiveness in non-linear regimes where linear effects compete with the self-organisation of turbulence, with collisional processes and with the dynamics of average profiles. Potentially, this entirely new control technique could improve the performance of tokamaks at no additional cost. The PhD thesis will require a detailed theoretical understanding of the two resonant processes and their various control parameters. It will be based on the use of the high performance computing gyrokinetic code GYSELA dedicated to the study of transport and turbulence in tokamak plasmas, which has recently been enhanced with an ECRH heating module. An experimental component is also planned on the WEST and/or TCV tokamaks to validate the identified most promising turbulence control scenario(s).
Plasma real time control by calorimetry
Inside thermonuclear fusion devices, plasma facing components are subject to intense heat fluxes. The WEST tokamak has water cooled plasma facing components to limit their heating. Calorimetric measurement on these components allows for the measurement of the power received by each component. This makes it possible to control the plasma position or the additional plasma heating in function of the power distribution.
During this PhD, a simulation of plasma control using calorimetry will be performed, simulating the heat fluxes received by the components as a function of the plasma position and the associated calorimetric response. In-situ calorimetric measurements will be carried out on the components at the top and bottom of the machine during dedicated plasma experiments to refine the simulations and the control of the WEST plasma position based on calorimetric measurements will finally be implemented and validated during dedicated experiments, for plasma-facing components protection and plasma physics purposes.
Real-Time control of MHD instabilities during WEST long pulses
In magnetically confined plasmas, low-frequency (typ. 1-10 kHz) large-scale magnetohydrodynamic (MHD) instabilities represent a risk for performance and plasma stability. During long pulses in the WEST tokamak, deleterious MHD modes appear frequently inducing a drop of central temperature and a higher plasma resistivity that result in lower performances and shorter discharge duration. The real-time detection of such instabilities and the application of mitigation strategies is therefore of great importance for plasma control in WEST but also for future devices like ITER.
These MHD instabilities induce coherent temperature/density perturbations. Instruments like Electron Cyclotron Emission (ECE) radiometer or reflectometrer provide localized, high time resolution of temperature or density fluctuations. However, MHD analysis is currently performed offline, after the discharge. Real-time capability is crucial for control applications. The modes must first be identified before applying a mitigation strategy based on the knowledge of the MHD stability criteria. MHD stability is strongly affected by local heating and current drive, for which Electron Cyclotron Resonance Heating and Current Drive systems (ECRH/ECCD) are especially well suited.
The objective of this PhD is to develop a control strategy for WEST long pulse operation. The first step is the real-time detection of low frequency MHD instabilities using first ECE radiometer, then adding instruments like ECE-imaging or reflectometry to enhance reliability and accuracy. Integrated plasma modelling will then be performed to explore MHD mitigation strategies. ECCD is an obvious actuator, but other tools such as a temporary change of the plasma parameters (current, density or temperature) will also be evaluated. The mitigation strategy will be integrated in WEST Plasma Control System. Initial strategy will rely on simple control loop, then Neural Network or deep-leaning algorithms will be tested.
Beam dynamics for a multi-stage laser-plasma accelerator
Laser–plasma wakefield accelerators (LWFAs) can provide accelerating gradients exceeding 100 GV/m, providing a pathway to reduce the size and cost of future high-energy accelerators for applications in synchrotron radiation, free-electron lasers, and emerging medical and industrial uses.
Scaling this technology to higher beam energies and charges requires both technological maturity and innovative acceleration schemes. Multi-stage configurations — connecting several plasma acceleration stages — offer key advantages: increasing beam energy beyond single-cell limits and enhancing total charge and/or repetition rate. These systems aim to overcome single-stage limitations while maintaining or improving beam quality at higher energies.
Designing an accelerator delivering stable, reproducible, high-quality beams requires comprehensive understanding of plasma acceleration physics and beam transport between successive stages.
Building on expertise at CEA Paris–Saclay's DACM, this PhD will focus on physical and numerical studies to propose a fully integrated multi-stage LWFA design, with particular attention to optimizing all components — plasma accelerating section and transport lines — to preserve beam quality in terms of transverse size, divergence, emittance, and energy spread.