New concepts for cold neutron reflectors

The CEA and the CNRS have launched an initiative to design a new neutron source using low-energy proton accelerators, the ICONE project [1]. The goal is to build a facility that will provide an instrumental suite of about ten spectrometers available to the French and European scientific community. Neutron scattering experiments require thermal and cold neutrons. The design of the moderator is therefore a crucial component of the project to maximize the source's performance.
One avenue for improving the moderator performances is to enhance the efficiency of the reflector, and more specifically, the cold neutron reflector. In this study, we propose to investigate the specific scattering properties of cold neutrons on nanostructured materials. Indeed, cold neutrons have long wavelengths (> 0.4 nm) and can therefore be coherently scattered by nanostructured materials. Scattering efficiency is not only amplified by coherent scattering effects, but it is potentially possible to direct this scattering if the reflecting material is anisotropic. This control over the scattering direction can further increase the moderator's brightness.
The first part of the work will consist of identifying the most promising nanostructured materials and modeling their cold neutron reflectivity performance. In a second step, these materials will be shaped and their properties characterized using neutron scattering devices at neutron scattering facilities such as the ILL in Grenoble or the PSI in Switzerland.

CONTEXT: strain - texture neutron instrumentation for ICONE

The CEA and the CNRS have launched an initiative to design a new neutron source using low-energy proton accelerators, the ICONE project. The objective is to build a facility that will offer an instrumental suite of about ten spectrometers available to the French and European scientific community. The project is currently in the Preliminary Design phase, with the aim of refining as much as possible all technical aspects.
We are proposing a PhD thesis on the modeling and development of a new neutron scattering spectrometer for measuring textures and stresses in materials. This technique makes it possible to probe residual stresses in materials after machining, heat treatment, and/or use, and to measure the crystallographic anisotropy of alloys to exploit the induced mechanical properties.
Part of the work will take advantage of the start-up of the DREAM and MAGIC spectrometers at ESS in Sweden, in which the LLB participated in the construction, so that the candidate can become familiar with time-of-flight neutron scattering techniques (measurements and data analysis).
In the second part of this work, we propose to implement statistical modulation techniques for the construction of an instrument, CONTEXT, on ICONE, which will allow to best exploit the potential of ICONE's long pulses. The objective will be to create a digital twin of the future instrument using various Monte Carlo simulation tools.

Spatiotemporal shaping of high-order harmonic emission in nanostructured crystals

We propose to study the spatiotemporal manipulation of radiation emitted by high harmonic generation, leveraging advances in nanofabrication technologies. The approach involves transposing methods developed for meta-optics to the strong-field regime specific to harmonic generation. The candidate will explore various design strategies to control the spatiotemporal properties of this radiation, which is intrinsically linked to the broad spectral bandwidth of attosecond pulses. These concepts will then be implemented and experimentally validated. This project aims to enhance the integration of high harmonic generation into optoelectronic devices, paving the way for new applications in ultrafast photonics.

https://iramis.cea.fr/lidyl/pisp/150720-2/

Recent advances in ultrafast optics and the control of highly nonlinear light–matter interactions now make it possible to generate attosecond light pulses (1 as = 10?¹8 s) through High-Order Harmonic Generation (HHG). This process converts a femtosecond laser pulse into coherent, ultrashort radiation in the extreme ultraviolet (XUV) range (10–150 eV). These unique light sources enable access to electronic dynamics on sub-femtosecond timescales and allow the probing of element-specific transitions that were previously only achievable at large-scale facilities such as synchrotrons. The Attophysics Group at LIDYL, a pioneer in the generation, characterization, and application of attosecond pulses, has recently developed sources driven by beams carrying spin (SAM) or orbital (OAM) angular momentum, opening new avenues for studying chiral and magnetic dynamics. Building on these advances, this PhD project aims to synthesize light fields with time- and space-dependent chirality, exploiting in particular the often-neglected longitudinal component of the electric field. Three regimes will be explored: a linear regime (XUV/IR pump–probe), a strongly nonlinear regime (structured visible–IR fields in chiral samples), and a weakly nonlinear regime (IR pump/XUV probe). This work will open a new class of attosecond physics experiments, bridging fundamental exploration and emerging applications.
The student will acquire practical knowledge about lasers, in particular femtosecond lasers, and hands on spectrometric techniques of charged particles. They will also study strong field physical processes which form the basis for high harmonic generation. They will become an expert in attosecond physics. The acquisition of analysis skills, computer controlled experiments skills will be encouraged although not required.
Details at https://iramis.cea.fr/lidyl/pisp/150720-2/

Coupled Friction Effects of Dirac sea and Electromagnetic Vacuum on Atomic movements

Quantum fluctuations induce conservative macroscopic forces such as the Casimir effect. They could also cause dissipative forces, termed vacuum (or quantum) friction. Up to now, this friction effect has been calculated with consideration of the electromagnetic fluctuations only, i.e. without taking into account the Dirac Sea. This project is devoted to the extension of our research in this direction: electrons, as main contributors of the matter-field interaction, also interact with electron-positron virtual pairs in the quantum vacuum. How much of quantum friction, at zero or finite vacuum temperature, could be due to this type of interaction? A first step will be adapting the present semi-classical framework to include vacuum polarization and pair creation. In doing so, one will encounter finite frequency cut-offs, traditionally linked to virtual pair creation; thus one will determine a friction component linked with the finite cut-off of Fourier integrals. On this research path, one shall pay attention to maintaining the mathematical coherence of the whole framework. A longer-term goal remains a complete and consistent quantum relativistic treatment of quantum friction at the atomic level.

Top