Investigation and use of uranium glasses for optical neutron detection

The Dosimetry, Sensors and Instrumentation Laboratory of the CEA/IRESNE Cadarache develops, manufactures and operates neutron flux detectors used in the vicinity of and inside nuclear reactor cores. In addition to conventional detectors (fission chambers, collectrons, etc.), the laboratory is working on innovative measurement methods such as optical detectors, semiconductors, fiber scintillators, etc. As part of this PhD thesis, the laboratory wants to explore the potential of Uranium-doped glasses. These glasses are known to show bright fluorescence under various types of radiations. The main idea of this thesis is to try to exploit this fluorescence to detect the fission reactions induced when the glass is exposed to a neutron flux. This could enable the development of a new generation of optical neutron detectors halfway between a fission chamber and a scintillator.
The thesis will focus on two main topics:
- firstly, a detailed understanding of fluorescence mechanisms, and the synthesis of uranium glass with properties optimized for our needs (sensitivity, emission spectrum, isotopic vector, etc.). Synthesis will be carried out in partner laboratories;
- secondly, the development of a dedicated instrumentation, probably in the form of optical fibers, to test these prototypes in a reactor.

Exploration of the energy deposition dynamic on short time scale with laser-driven electron accelerator in the context of the Flash effect in radiotherapy

The objective of the thesis project is to analyze the physicochemical processes resulting from the extreme dose rates that can now be obtained in water with the ultra-short (fs) pulses of relativistic electrons produced by laser-plasma acceleration. Indeed, first measurements show that these processes are probably not equivalent to those obtained with longer pulses (µs) in the FLASH effect used in radiotherapy. To achieve this, we propose to analyze the dynamics of formation/recombination of the hydrated electron, an emblematic species of water radiolysis, to qualify and quantify the dose rate effect over increasingly shorter times. This will be done in three stages in support of the necessary and now accessible technological progress, to have a dose per pulse sufficient to directly detect the hydrated electron. First, with the existing UHI100 facility, using the scavenging of the hydrated electron by producing a stable species; then producing a less stable but detectable species in real time and increasing the repetition rate of the electron source. Finally, by using an innovative concept named a “hybrid target”, based on a plasma mirror as an electron injector coupled to a laser-plasma accelerator, delivering larger doses with a narrower energy spectrum, we will be able to develop pump-probe detection allowing access to the shortest times, and to the formation in clusters of ionization, of the hydrated electron and measuring its initial yield.

Plasma Mirrors: towards extreme intensity light sources and high-quality compact electron

Research objectives:
expand the capabilities of the WarpX Partice-In-Cell code for lower cost-to-convergence using mesh refinement.
Devise a high-charge high quality injector for laser-plasma accelerators.
Determine feasibility of the proposed scheme on a 100-TW-class laser system.

The researcher will benefit from a large variety of training available at CEA on HPC and computer programming as well as training at our industrial partners (ARM, Eviden) and Université Paris Saclay. The activities will be carried out in the framework of the Marie Sklodowska Curie Action Doctoral Network EPACE (European compact accelerators, their applications, and entrepreneurship)

Topological magnons in quantum materials

Topology has become an essential paradigm in condensed matter, making it possible to classify phases of matter according to properties that are invariant under continuous deformations. Early research has mainly focused on electronic band structures, leading to the discovery of “topological insulators” for example. However, there is growing interest in applying topological concepts to bosons, in particular magnons. Magnons, which are collective excitations in magnetic materials, illustrate how topology influences magnetic dynamics and affects heat and spin transport. Analogues of topological insulators and semi-metals appear in their band structures. Magnons thus offer a platform for studying the interplay between magnetic symmetries and topology, examining the effect of interactions on topological bands, and generating protected spin currents at interfaces. The search for materials containing topological magnons is therefore crucial, especially for applications in magnonics, which exploit spin waves for fast data storage and processing.

This thesis project is dedicated to exploring these topological aspects in candidate quantum materials using neutron and X-ray scattering techniques in large scale facilities (ILL, ESRF, SOLEIL) to probe the magnon band structure in search of topological features such as Dirac or Weyl points. Experimental results will be supported by numerical and theoretical calculations of magnonic bands incorporating topological concepts.

Nucleation, Growth, and Multi-Scale Structural Properties of Colloidal Nanoparticles of Actinide Oxides (Pu, U, Th)

Nanocrystalline oxides possess unique physicochemical properties, modulated by their size and local structure, making them promising for various technological applications. However, actinide oxide nanoparticles remain underexplored due to their radioactivity and toxicity. Nonetheless, studies dedicated to these species are growing, driven by environmental and industrial considerations, particularly for their involvement in current and future nuclear fuel cycles. This thesis focuses on plutonium, a key element in nuclear reactors. Its behavior in solution is complex, particularly due to hydrolysis reactions that lead to the formation of highly stable colloidal PuO2 nanoparticles. Although these species are now better described, the mechanisms leading to their formation remain largely unexplored.

The ambitious goal of this thesis is to uncover the fundamental mechanisms involved in the formation of these nanoparticles by adopting a systematic approach that combines a wide range of experimental parameters. These include the synthesis medium, temperature, reactant concentration, reaction time, and the contribution of sonochemistry. The focus will be on studying the nucleation and growth stages of these nanoparticles, as well as their structural properties in relation to the physicochemical conditions that influence their formation. Studies will be conducted at ICSM with Th, U, and Zr as analogs, and at the Atalante facility for Pu. In addition to standard laboratory techniques necessary for characterizing these systems, complementary experiments will be carried out on synchrotron lines (SOLEIL and ESRF) to thoroughly investigate the structural and reactive properties of these species and their precursors.

Top