Magnetic Tunnel Junctions at Boundaries

Spin electronics, thanks to the additional degree of freedom provided by electron spin, enables the deployment of a rich physics of magnetism on a small scale, but also provides breakthrough technological solutions in the field of microelectronics (storage, memory, logic, etc.) as well as for magnetic field measurement.
In the field of life sciences and health, giant magnetoresistance (GMR) devices have demonstrated the possibility of measuring the very weak fields produced by excitable cells on a local scale (Caruso et al, Neuron 2017, Klein et al, Journal of Neurophysiology 2025).
Measuring the information contained in the magnetic component associated with neural currents (or magnetophysiology) can, in principle, provide a description of the dynamic, directional and differentiating neural landscape. It could pave the way for new types of implants, thanks to their immunity to gliosis and their longevity.
The current bottleneck is the very small amplitude of the signal produced (<1nT), which requires averaging the signal in order to detect it.
Tunnel magnetoresistances (TMR), in which a spin-polarised tunnel current is measured, offer sensitivity performance that is more than an order of magnitude higher than GMR. However, they currently have too high a level of low-frequency noise to be fully beneficial, particularly in the context of measuring biological signals.
The aim of this thesis is to push back the current limits of TMRs by reducing low-frequency noise, positioning them as break sensors for measuring very weak signals and exploiting their potential as amplifiers for small signals.
To achieve this objective, an initial approach based on exploring the materials composing the tunnel junction, in particular those of the so-called free magnetic layer, or on improving the crystallinity of the tunnel barrier, will be deployed. A second approach, consisting of studying the intrinsic properties of low-frequency noise, particularly in previously unexplored limits, at very low temperatures where intrinsic mechanisms are reached, will guide the most promising solutions.
Finally, the most advanced structures and approaches at the state of the art thus obtained will be integrated into devices that will provide the building blocks for going beyond the state of the art and offering new possibilities for spin electronics applications. These elements will also be integrated into systems for 2D (or even 3D) mapping of the activity of a global biological system (neural network) and for evaluating capabilities for clinical cases (such as epilepsy or motor rehabilitation).
It should be noted that these improved TMRs may have other applications in the fields of physical instrumentation, non-destructive testing, and magnetic imaging.

Electronic excitations in unidimensional nano-objects: an ab initio description and connection with quantum entanglement

Understanding the electronic properties of valence electrons in nano-objects is not only of fundamental interest but also essential for the design of next-generation optoelectronic devices. In such systems, electron confinement in low-dimensional structures gives rise to unique properties.
These properties are inherently linked to fundamental characteristics of matter and the associated quantum fluctuations. More recently, concepts such as quantum entanglement and Fisher quantum information have been connected to spectroscopic properties. On the other hand, these spectroscopic properties can be probed through experimental techniques, including absorption, photoemission, and inelastic X-ray scattering.
Recently, we demonstrated that the widely used formalism to study isolated nano-objects was not adapted, and that it affected the calculated optical properties. We evidenced, theoretically and experimentally, that for the two-dimensional objects, the optical response contained, beyond the transverse contribution, a resonance coming from the plasmon, which corresponds to a longitudinal response. The role of the interfaces revealed to be determinant. The project of this year is to have a critical analysis of the optical properties of unidimensional objects.
Beyond the fundamental characterization of the 1D dielectric function, this research will explore its connection to quantum entanglement and Fisher quantum information—concepts that, to date, have not been investigated in low-dimensional systems.

Origins and consequences of the heterogeneous alteration of nuclear glasses

This PhD project focuses on the long-term behavior of nuclear glasses used to confine long-lived radioactive waste.
In aqueous environments, these glasses generally undergo homogeneous alteration: the transformation into alteration products occurs at a uniform rate across the entire surface.
However, cases of heterogeneous alteration also exist, where the glass/gel interface becomes irregular, forming pits or cavities.
Two key questions arise: what are the mechanisms responsible for that behavior, and what are the consequences for the long-term durability of the glass?
Several hypotheses have been suggested in the literature, such as local fluctuations in solution composition or mechanical stress at the glass surface, but no definitive explanation has yet been established.
The proposed approach combines accelerated experiments with chemical, mechanical, and structural characterizations, as well as modeling (e.g., mesoscopic and Monte Carlo models).
Experiments will be conducted on glasses with various surface states (polished, irradiated, fractured, etc.) using analytical tools such as SEM, TEM, and nanoSIMS.
Once the mechanisms are identified, the long-term impact of these heterogeneous alteration patterns can be assessed.
The project seeks candidates with a background in chemistry or materials science, strong interest in modeling, and solid theoretical knowledge.

Influence of a nano-antenna on the intersystem crossing rate of a single molecule

As part of the continuation of the ANR JCJC PlasmonISC project, we propose a thesis subject mainly experimental in nano-photonics. The objective of the thesis is to study the influence of a nano-antenna (plasmonic, magnetic or dielectric) on the rate governing the photophysics of fluorescence emission from a single molecule, with a particular interest in the intersystem crossing rate. We have developed a dedicated optical bench combining optical and atomic force microscopy, an experimental procedure, as well as signal processing tools, showing encouraging first results with a dielectric tip. We wish to continue to explore the single molecule/nano-antenna interaction with other types of tips generating other physical effects. The ability to control the transition to the triplet state is of great interest for single photon sources, organic light emitting diodes, and in chemistry.

Toughening random lattice metamaterials with structure heterogeneities

To reduce the environmental and/or the energetic impact of vehicles, a favored method is to decrease the mass of prime materials used to build them, that being done without hindering their mechanical performances. In this field, the use of mechanical metamaterials has been a major breakthrough. These metamaterials, generally created using additive manufacturing techniques, have a microscopic truss structure. They are porous by design, and thus very lightweight, and the distribution of their microscopic beams or tubes (i.e. their architecture) can be chosen to make them as stiff as possible, making them choice candidates for high technology applications where the rigidity-density ratio is paramount, such as aerospatial research (https://en.wikipedia.org/wiki/Metallic_microlattice).

For the most part however, metamaterials that have been designed up to now present periodical architectures. As a consequence, their mechanical behavior is inherently anisotropic, which makes them difficult to model using material mechanics conventional approaches, and strongly limits their usage in various possible fields of applications. In recent works, we have developped a new class of microlattice metamaterials with a random spatial distribution of beams, generated with a combination of random close packing and Delaunay triangulation algorithm then 3D-manufactured. These metamaterials show an isotropic mechanical behavior, and their stiffness-density ratio reaches the theoretical limit for porous materials. They are neverheless still fragile and subject to fracture and yielding.

The aim of this PhD project is to toughen these metamaterials based on techniques and mechanisms from polymer and soft matter physics. Our hypothesis is that including in a controlled statistical way structure heterogeneities, at the node level by modulating the connectivity or at the beam level by changing their section or shape, can allow toughening of the metamaterial. Indeed, localized heterogeneities can introduce mechanical dissipations in the network at various scales. The work of this project will consist in experiementally characterizing the mechanical properties of the metamaterials and to compare them to their homogeneous equivalent, and to describe their fracture resistance. Mechanical tests will be performed on an experimental setup conceived in the SPHYNX group. Analysis of the local and global deformation will be performed using different experiemental methods, in order to detect micro crack events with precision. An additionnal theoretical approach completed by numerical simulations based on fuse network and random beam models can also be discussed.

A strong interest for instrumentation and teamwork is requested for this project with a major experimental component. Proficiencies in experimental mechanics, material sciences and/or statistical physics are desirable. Some knowledge in modelization and numerical simulations are a bonus without being required. This project has both fundamental and applied interests and can help the student find prospects both in academia and in industrial opportunities.

https://iramis.cea.fr/lidyl/pisp/150720-2/

Recent advances in ultrafast optics and the control of highly nonlinear light–matter interactions now make it possible to generate attosecond light pulses (1 as = 10?¹8 s) through High-Order Harmonic Generation (HHG). This process converts a femtosecond laser pulse into coherent, ultrashort radiation in the extreme ultraviolet (XUV) range (10–150 eV). These unique light sources enable access to electronic dynamics on sub-femtosecond timescales and allow the probing of element-specific transitions that were previously only achievable at large-scale facilities such as synchrotrons. The Attophysics Group at LIDYL, a pioneer in the generation, characterization, and application of attosecond pulses, has recently developed sources driven by beams carrying spin (SAM) or orbital (OAM) angular momentum, opening new avenues for studying chiral and magnetic dynamics. Building on these advances, this PhD project aims to synthesize light fields with time- and space-dependent chirality, exploiting in particular the often-neglected longitudinal component of the electric field. Three regimes will be explored: a linear regime (XUV/IR pump–probe), a strongly nonlinear regime (structured visible–IR fields in chiral samples), and a weakly nonlinear regime (IR pump/XUV probe). This work will open a new class of attosecond physics experiments, bridging fundamental exploration and emerging applications.
The student will acquire practical knowledge about lasers, in particular femtosecond lasers, and hands on spectrometric techniques of charged particles. They will also study strong field physical processes which form the basis for high harmonic generation. They will become an expert in attosecond physics. The acquisition of analysis skills, computer controlled experiments skills will be encouraged although not required.
Details at https://iramis.cea.fr/lidyl/pisp/150720-2/

LOW THERMAL CONDUCTIVITY MECHANISMS IN RARE-EARTH OXIDES

Understanding the parameters which determine the magnitude of thermal conductivity (k) in solids is of both fundamental and technological interests. k is sensitive to all quasiparticles carrying energy, whether charged or neutral. Foremost among these are phonons, the collective vibrations of atoms in crystals. Measurements of k, however, have also identified more exotic carriers like spinons in the antiferromagnetic Heisenberg chain. In terms of applications, thermal properties of solids are at the heart of major social and environmental issues. The need, for instance, for highly efficient thermoelectric and thermal barrier devices to save energy has driven the quest for low thermal conductors. Over time, a range of strategies has thus been suggested to hinder phonon velocities and/or mean free paths: use of weak interatomic bonds, strong anharmonicity, nanoscale designs, or complex or disordered unit cells. Another promising concept to further impair the phonon mean-free path is based on magneto-elastic coupling.
Still in its infancy, this concept has emerged from the observation of a spin-phonon coupling in a variety of rare-earths based materials. The magnetic excitations involved in the magnetoelastic coupling at play in those compounds are not standard magnons, but low energy crystal field excitations (CEF). Since the latter are local electronic excitations, they do not disperse and thus cannot be associated with propagating quasiparticles. In other words, they are not potential heat carriers hence do not contribute to k, in contrast with dispersive magnetic quasiparticles like magnons. However, they can significantly reduce the phonon lifetime by opening a new scattering mechanism.
The aim of the PhD thesis is therefore to investigate, both experimentally and theoretically, magnetoelastic coupling and its impact on thermal conductivity. The systems to be studied will be (but not restricted to) Tb perovskites, and will include high-entropy or entropy stabilized compositions, displaying glass-like thermal conductivity.

OCTOCHLORE MAGNETS

In recent years, progress in the field of frustrated magnets have led to the emergence of innovative concepts including new phases of matter. The latter’s do not show any long-range order (no symmetry breaking), but, in classical systems, exhibit a highly degenerate ground state made of classical configurations. An emblematic example is spin ice in pyrochlores : in this case, the construction of those configurations relies on a simple rule, which states that the sum of the four spins in any tetrahedron of the magnetic lattice must be zero. This so-called “ice rule” can be understood as the conservation rule of an emergent gauge field. Experimental evidence of this physics was provided by the observation of singular points in the spin-spin correlation function by elastic neutron scattering experiments. Such singular points, called pinch points, arise because the correlations of the emergent divergence free field are dipolar in nature, with
algebraic spin-spin correlations.
The origin of this physics lies in the conjunction between lattice connectivity, anisotropy and magnetic interactions, which collude to select configurations where a local constraint between spins is preserved. Recently, several authors have proposed a generalization of this concept to other geometries and other constraints, as for instance the “octochlore” lattice, formed by corner sharing octahedra.
Depending on the chosen constraint, different spin liquids have been theoretically predicted.
An experimental realization of the octochlore lattice can be found in rare earth fluorides KRE3F10, as their crystal structure forms a “breathing” network of small and large RE octahedra. Very little is known about the physics of KRE3F10 compounds, apart from magnetization measurements performed two decades ago. The goal of the PhD work will be to characterize the ground state of two Kramers members of the KRE3F10 system (RE = Dy3+, Er3+), to identify in particular any signature of the spin liquid physics suggested by recent theoretical works, and better understand the constraints leading to it.

Triplet superconductors: from weak to strong spin-orbit coupling

Since the 1980s, several unconventional superconductors have been discovered, some of which exhibit triplet pairing (total spin S=1) that may lead to interesting topological properties. Unlike singlet superconductors, their order parameter is a vector depending on the spin components (S_z=-1,0,1) and is strongly influenced by the crystal symmetry and the spin–orbit coupling (SO).
The thesis aims to study the transition between weak and strong spin–orbit coupling in a triplet superconductor, using a minimal multiband model inspired by the material CdRh2As3, where a field-induced triplet phase was recently observed. This research will enable the calculation of the dynamic spin susceptibility and the identification of possible collective spin resonances, similar to those seen in superfluid He3.
The project will mainly rely on analytical field-theoretical methods applied to condensed matter. It is intended for candidates with a solid background in quantum mechanics, statistical physics, and solid-state physics.

Magneto-mechanical stimulation for the selective destruction of pancreatic cancer cells while sparing healthy cells

A novel approach for selectively destroying cancer cells is being developed through a collaboration between the BIOMICS biology laboratory and the SPINTEC magnetism laboratory, both part of the IRIG Institute. This method employs magnetic particles dispersed among cancer cells, which are set into low-frequency vibration (1–20 Hz) by an applied rotating magnetic field. The resulting mechanical stress induces controlled cell death (apoptosis) in the targeted cells.
The effect has been demonstrated in vitro across various cancer cell types—including glioma, pancreatic, and renal cells—in 2D cultures, as well as in 3D pancreatic cancer spheroids (tumoroids) and healthy pancreatic organoids. These 3D models, which more closely mimic the structure and organization of real biological tissues, facilitate the transition to in vivo studies and reduce reliance on animal models. Preliminary findings indicate that pancreatic cancer cells exhibit a higher affinity for magnetic particles and are more sensitive to mechanical stress than healthy cells, enabling selective destruction of cancer cells while sparing healthy tissue.
The next phase will involve confirming this specificity in mixed spheroids (containing both cancerous and healthy cells), statistically quantifying the results, and elucidating the mechanobiological mechanisms underlying cell death. These promising findings pave the way for an innovative biomedical approach to cancer treatment.

Top