Next-Gen Surface Analysis for Ultrathin Functional Materials
Advanced nanoelectronics and quantum devices rely on ultrathin oxides and engineered interfaces whose chemical composition, stoichiometry and thickness must be controlled with sub-nanometer precision. LETI is installing the first 300-mm multi-energy XPS–HAXPES tool with angle-resolved capability, enabling quasi in situ chemical metrology from deposition to characterization.
This PhD will develop quantitative, multi-energy and angle-resolved XPS/HAXPES methodologies for ultrathin oxides and oxynitrides, validate measurement accuracy, and establish robust protocols for quasi in situ transfer of sensitive layers. Applications include advanced CMOS stacks and quantum Josephson junctions, where sub-2 nm AlOx barriers critically determine device performance.
The project directly supports the development of next-generation quantum technologies, advanced photonics and energy-efficient microelectronics by improving the reliability and stability of nanoscale materials. The work will be carried out within a strong multi-partner framework.
Development of a 3D gel dosimetry method for quality control of radiotherapy treatment plans using ultra-high dose rate charged particle beams (FLASH)
Ultra-high-dose-rate FLASH radiotherapy is one of the most promising innovations of the last decade in radiation oncology. It has the potential to eradicate radioresistant tumours and reduce unwanted side effects, that in turn increases cure rates and improves patient quality of life. However, dosimetry infrastructure is lagging behind this clinical and technological advance, with current dosimeters no longer suitable and none of those under development achieving consensus.
The optically read dosimetric gel developed at LNHB-MD (CEA Paris-Saclay) is a promising candidate, as photon beam measurements have shown a linear response over a wide dose range (0.25 - 10 Gy) as well as independence in energy (6 - 20 MV) and dose rate (1 - 6 Gy/min). In addition, this water-equivalent dosimeter has the unique ability to provide three-dimensional measurements with high spatial resolution (< 1 mm) with an associated combined uncertainty of approximately 2% (k = 1). This dosimetry method has been validated for quality control of conventional radiotherapy treatment plans but has never been tested with FLASH beams.
This doctoral project aims to develop a 3D gel dosimetry method suitable for FLASH radiotherapy delivered by charged particle beams: (1) conventional energy electrons (= 10 MeV), (2) very high energy electrons (VHEE = 50 MeV), and (3) protons (= 100 MeV). For each of these types of beams, available at the Institut Curie in Orsay and also at Gustave Roussy in Villejuif, the validation of the dose distribution measured by gel will be carried out by comparison with measurements using other dosimeters (e.g. diamond, alanine) and Monte Carlo simulations.
This study will make a significant contribution to improving patient safety, optimising treatment efficacy and the future integration of FLASH radiotherapy into clinical practice.
Li alloys for all solid-state batteries with sulfide electrolyte
Using lithium metal as a negative electrode would significantly increase the energy density of current batteries. However, today, this material quickly leads to short circuits during charge/discharge cycles, mainly due to the formation of dendrites and the instability of the interface with the electrolyte. All-solid-state batteries, particularly with sulfide electrolytes, are a promising alternative, but the limitations of lithium metal remain. Lithium alloys appear to be a solution for improving mechanical and interfacial properties while maintaining good energy densities.
The objective of the PhD is to develop and select lithium alloys suitable for sulfide electrolytes batteries, then integrate them into all-solid-state cells in order to study degradation mechanisms. The work will be focused on the synthesis of the alloys, their shaping in thin films and their integration into cells. The alloys will be finely characterized and then electrochemically tested in laboratory cells and pouch cells. Finally, degradation phenomena, particularly at interfaces, will be studied using advanced post-mortem characterizations.
Reducing damage and loading in high aspect ratio III-V etching
The growing demand for III-V semiconductors in high-efficiency photovoltaics, quantum photonics, and advanced imaging technologies requires innovative and cost-effective fabrication methods. This PhD project focuses on developing plasma etching processes for In-based III-V semiconductors to produce high aspect ratio (HAR) structures on large wafers from 100 to 300 mm. The research addresses two key challenges: understanding how etching process windows evolve with material loading and process conditions (physical vs. chemical dominance), and minimizing electrical degradation induced by HAR etching, which is critical for device performance.
These challenges are fundamentally linked to the low volatility of In-based etch byproducts, the need to balance kinetic and thermal energy inputs to enhance etch selectivity, and the management of etch loading effects for large-scale production. The experimental approach will leverage CEA-Leti's state-of-the-art facilities, including the Photonics platform for 2–4-inch wafer processing, which enables masking strategies (hard mask deposition, photolithography) and low-temperature (150°C) etching.
Characterization will involve SEM for etch profile analysis, XPS for surface composition, and TEM-EDX for sidewall quality assessment. Damage evaluation will be performed using near-infrared photoluminescence decay to measure minority carrier lifetime and identify recombination centers. The work aims to develop optimized HAR etching processes (aspect ratios >10, critical dimensions <1 µm) for In-based III-V materials, investigate pulsed plasma techniques to reduce etch-induced damage, and provide insights into defect formation mechanisms to guide process optimization for industrial applications.
Introduction of innovative materials for sub-10nm contact realization
As part of the FAMES project and the European ChipACT initiative, which aim to ensure France’s and Europe’s sovereignty and competitiveness in the field of electronic nano-components, CEA-LETI has launched the design of new FD-SOI chips. Among the various modules being developed, the fabrication of electrical contacts is one of the most critical modules in the success of advanced node development.
For sub-10 nm node, the contact realization is facing a lot of challenges like punchthrough (due to low etch selectivity during contact etching), voids during metal deposition, self-alignment, and parasitic capacitance. New breakthrough approach has recently been proposed consisting in the deposition of new dielectric films with chemical gradient. This thesis focuses on the development (deposition an etching processes) of new gradient compounds incorporated into SiO2 to address the current issues.
Advanced characterization of defects generated by technological processes for high-performance infrared imaging
This thesis falls within the field of cooled infrared detectors. The CEA-LETI-MINATEC Infrared Laboratory specializes in the design and manufacture of infrared camera prototypes used in defense, astronomy, environmental monitoring, and satellite meteorology.
In this context of high-performance imaging, it is crucial to ensure optimal detector quality. However, manufacturing processes can introduce defects that can degrade sensor performance. Understanding and controlling these defects is essential to increase reliability and optimize processes.
The objective of the thesis is to identify and precisely characterize these defects using cutting-edge techniques, rarely combined, such as Laue microdiffraction and FIB-SEM nanotomography, enabling structural analysis at different scales. By linking the nature and origin of defects to manufacturing processes and quantifying their impact on performance, the doctoral student will contribute directly to improving the reliability and efficiency of next-generation infrared sensors.
The doctoral student will join a team covering the entire detector manufacturing chain and will actively participate in the development (LETI clean room) and structural characterization (CEA-Grenoble platform, advanced techniques) of samples. He/she will also be involved in electro-optical characterization in partnership with the Cooled Infrared Imaging Laboratory (LIR), which specializes in detailed analysis of active materials at cryogenic temperatures.
Advanced electrode materials by ALD for ionic devices
This work aims to develop Advanced ultrathin cunductive layers (<10nm) by ALD (Atomic Layer Deposition)for électrodes use(resistivity 100). The other challenge aims to reduce the ALD-based electrode layer thickness less than 5nm while still maintaining the advanced electric properties (resistivity in the mOhm range).
This work covers multiple aspects including inter alia ALD process, ALD precursors, Elementary characterization of intrinsec properties (physico-chemical, morphological and electrochemical) as well as integration on short loop 3D devices.
Superconducting silicide contacts on hyperdoped silicon by nanosecond pulsed-laser annealing
In the race towards building a quantum computer, there is a deep interest in fabricating devices based on the robust and scalable silicon FD-SOI technology. One example is the Josephson Field Effect Transistor (JoFET) whose operability relies on the high transparency of the interface between the superconducting source/drain regions and the semiconducting channel. Such transparency could be improved by doping the source/drain regions, and hence lowering the Schottky barrier height at the superconductor/semiconductor interfaces.
This PhD aims at developing highly transparent superconducting silicide contacts on a 300 mm production line using Nanosecond Pulsed Laser Annealing (NPLA). NPLA will play a key role for reaching extremely high doping concentrations in silicon [1,2], then forming the superconducting silicides (CoSi2, V3Si) with minimal thermal budget and related dopant deactivation. A particular focus will be devoted on the stresses during silicide formation and their impact on the superconducting critical temperature. Also, the distribution of dopants will be assessed by Atom Probe Tomography (APT), an advanced 3D imaging technique capable of imaging the distribution of dopants at the atomic scale [3]. Finally, electrical measurements on fabricated junctions and transistors will be carried out at low temperature (< 1 K) in order to evaluate the transparency of the superconducting contacts.
Robust multi-material topological optimization under manufacturability constraints applied to the design of superconducting magnets for high-field MRI
MRI scanners are invaluable tools for medicine and research, whose operation is based on exploiting the properties of atomic nuclei immersed in a very intense static magnetic field. In almost all MRI scanners, this field is generated by a superconducting electromagnet.
The design of electromagnets for MRI must meet very demanding requirements in terms of the homogeneity of the field produced. In addition, as the magnetic field becomes more intense, the forces exerted on the electromagnet increase, raising the issue of the mechanical strength of the windings. Finally, the “manufacturability” of the electromagnet imposes constraints on the shapes of acceptable solutions. The design of superconducting electromagnets for MRI therefore requires a meticulous effort to optimize the design, subject to constraints based on magneto-mechanical multiphysics modeling.
A new innovative multiphysics topological optimization methodology has been developed, based on a density method (SIMP) and a finite element code. This has made it possible to produce magnet designs that meet the constraints on the homogeneity of the magnetic field produced and on the mechanical strength of the windings. However, the solutions obtained are not feasible in practice, both in terms of the manufacturability of the coils (cable windings) and their integration with a supporting structure (coils held in place by a steel structure).
The objective of this thesis is to enhance the topological optimization method by formalizing and implementing manufacturing constraints related to the winding method, residual stresses resulting from pre-tensioning the cables during winding, and the presence of a structural material capable of absorbing the forces transmitted by the coils.
development of a NET (Negative Emission Technologie) process combining CO2 capture and hydrogenation into synthetic fuel
Until recently, CO2 capture technologies were developed separately from CO2 utilization technologies, even though coupling the CO2 desorption stage with the chemical transformation of CO2, which is generally exothermic, would yield significant energy savings.
The first coupled solutions have recently been proposed, but they are mainly at moderate temperatures (100-180°C) [1], or even recently close to 225°C [2].
The objective of this doctoral thesis is to study, both experimentally and theoretically, a coupled system in the 250-325°C temperature range that allows via Fischer-Tropsch-type catalytic hydrogenation the direct production of higher value-added products