Modelling of Thermo-Fluid Phenomena in the Plasma Nozzle of the ELIPSE Process

The ELIPSE process (Elimination of Liquids by Plasma Under Water) is an innovative technology dedicated to the mineralization of organic effluents. It is based on the generation of a thermal plasma fully immersed in a water-filled reactor vessel, enabling extremely high temperatures and reactive conditions that promote the complete decomposition of organic compounds.
The proposed PhD research aims to develop a multiphysics numerical model describing the behavior of the process, particularly within the plasma nozzle, a key zone where the high-temperature gas jet from the torch interacts with the injected liquids.
The approach will rely on coupled thermo-aerodynamic modeling, integrating fluid dynamics, heat transfer, phase change phenomena, and turbulence effects. Using Computational Fluid Dynamics (CFD) tools, the study will characterize plasma–liquid interaction mechanisms and optimize the geometry and operating conditions of the process. This modeling will be compared and validated against complementary experimental data obtained from the ELIPSE setup, providing the necessary input for model calibration and validation.
This work will build upon previous research that has led to the development of thermal and hydraulic models of both the plasma torch and the reactor vessel. Integrating the new model within this framework will yield a comprehensive and coherent representation of the ELIPSE process. Such an approach represents a decisive step toward process optimization and industrial scale-up.
The ideal candidate will be a Master’s or final-year engineering student with a background in process engineering and/or numerical simulation, demonstrating a strong interest in physical modeling and computational approaches.
During this PhD, the candidate will develop and strengthen skills in multiphysics numerical modeling, advanced CFD simulation, and thermo-aerodynamic analysis of complex processes. They will also acquire solid experience in waste treatment, a rapidly expanding field with significant industrial and environmental relevance. These skills will provide strong career opportunities in applied research, process engineering, energy, and environmental sectors.

Simulation of flow in centrifugal extractors: the impact of viscous solvents on operation

Within the framework of nuclear spent fuel reprocessing, the CEA co-developed with ROUSSELET-ROBATEL liquid/liquid extraction (ELL) devices aimed at bringing two immiscible liquids into contact, one of which contains the valuable metals to be recovered and the other an extractant molecule. The multi-stage Centrifugal Extractor is one of the devices used to perform ELL at the La Hague plant. The future use of solvents potentially more viscous than current industrial standards may pose performance issues that need to be studied in advance in the laboratory to provide the necessary recommendations to restore the expected performance levels for the plant. The nuclear environment in which these devices operate makes in situ studies nearly impossible, thus depriving R&D of valuable information that is nevertheless essential for a deep understanding of the physicochemical mechanisms at the heart of the issues involved. To address this, the proposed study will rely on a numerical approach that will have been previously validated by comparison with either historical experimental data or data acquired from more recent ad hoc pilot systems. Thus, following a phase of literature review and capitalization of recent measurements, it is proposed to first create test cases that will be used to validate the numerical models. Based on this validation and in light of the knowledge acquired from previous theses concerning the effect of viscosity on flows, it is proposed to numerically explore the impact of an increase in solvent viscosity on centrifugal extractors. This will pave the way for a better understanding of the operation of the devices as well as operational or geometric improvements. The student will work at CEA Marcoule, in a research environment at the crossroads between a team of experimentalists and a team of numerical simulators. This experience will enable the student to acquire important skills in modeling liquid-liquid flows as well as solid knowledge on the development of liquid-liquid contactors.

Innovative techniques for evaluating critical steps and limiting factors for batteries formation

The battery manufacturing sector in Europe is currently experiencing strong growth. The electrical formation step that follows battery assembly and precedes delivery has received little academic attention, despite being crucial for battery performance (lifespan, internal resistance, defects, etc.). It is an essential time-consuming and costly step in the process (>30% of the cell manufacturing cost, and 25% of the equipment cost in a Gigafactory) that would greatly benefit from optimization.
In this thesis, we propose studying battery formation using innovative, complementary, operando non-intrusive techniques. The goal is to identify the limiting mechanisms of the electrolyte impregnation step (filling electrode pores) and of the initial charge. The candidate will implement experimental methods to monitor and analyze these mechanisms. He will also establish a methodology and protocols for studying these steps, combining electrochemical measurements with non-intrusive physical characterizations under operating conditions. The research will focus on optimizing formation time and quality control during this stage.

Modeling of a non-equilibrium dispersed phase and its fragmentation

In the context of the sustainable use of nuclear energy to produce carbon-free electricity, fourth-generation reactors, also known as "fast neutron" reactors, are necessary to close the fuel cycle.
This thesis falls within the framework of safety studies associated with such sodium-cooled reactors, and more particularly the hypothetical situation of a molten core relocating by gravity towards the core catcher at the bottom of the reactor vessel. A jet of corium (mixture of molten fuel and structural elements of the core) then interacts violently with the coolant, inducing, among other things, the fragmentation of the corium jet into droplets coupled with film boiling of the coolant. Characteristics of the resulting dispersed phase of corium and its fragmentation are crucial for studying the risk of runaway and steam explosion.
The aim of this thesis is to model a dispersed phase and its fragmentation in a surrounding fluid, using an approach that is both efficient and able to account to the scale variations and thermal imbalances between the droplets and the carrier phase. The method considered to meet these objectives is the method of moments, which derives from a kinetic model. It requires adequate closure and numerical schemes that satisfy non-standard constraints, while offering, in return, a crucial cost/accuracy compromise in the context studied. The advancements will be a priori implemented in the CFD software SCONE, built on the CEA's open-source TRUST platform.
The main work location will be based at the LMAG (Laboratory of Severe Accidents Modeling) at the IRESNE Institute of CEA Cadarache. Part of the work will also be carried out at the EM2C Laboratory (Molecular and Macroscopic Energetics, Combustion) – CNRS/CentraleSupélec in Paris.
The future PhD will work in a scientific dynamic environment and will acquire skills enabling to aspire to academic and industrial R&D positions.

Keywords : Dispersed Phase, Fragmentation, Kinetic, Method of Moments, Multiphase, Numerical methods, Severe Accidents.

Constrained geometric optimization of immersed boundaries for thermal-hydraulic simulations of turbulent flow in a finite-volume approach

The technical issue underpinning this thesis topic is the mitigation of the consequences of a loss of primary coolant accident in a pressurized water reactor with loops. It is of the utmost importance to minimize the flow of water leaving the vessel and to manage the available cold water reserves for safety injections as effectively as possible, in order to prevent or delay core flooding, overheating, and possible core degradation. To this end, the use of passive devices operating on the principle of hydraulic diodes, such as vessel flow limiters or advanced accumulators, is being considered. The subject of this thesis is the geometric optimization of this type of device, described by an immersed boundary, in order to maximize its service efficiency.
Several recent theses have shown how to introduce the Penalized Direct Forcing (PDF) immersed boundary method into the TRUST/TrioCFD software, under various spatial discretizations and for laminar and turbulent regimes. Similarly, they have ruled on the possibilities of deterministic geometric optimization in the finite-element context during simulations, based on the use of the PDF method.
After a bibliographic study of this kind of method, we will focus on the possibilities of implementation in finite volume discretization, the consideration of constraints, and the comparison to reference calculations. The latter will be carried out on academic and industrial configurations (accumulators and flow limiters).
The doctoral student will work in a R&D unit on innovative nuclear system within the IRESNE Institute (CEA Cadarache. He will develop skills in fluid mechanics and numerical methods.

Nucleate boiling within porous deposits: study of the coupling between coolant composition and capillary vaporization

In the search of the optimal combination of low-carbon energy sources to address the challenge of climate change, nuclear energy plays a crucial role alongside intermittent renewable energies. In this context, the performance and safety of Pressurized Water Reactors (PWRs), which make up the French nuclear fleet, remain an active and high-value research area.
In these reactors, a subcooled nucleate boiling regime can occur, particularly when the local temperature of the coolant exceeds its saturation temperature. This wall boiling promotes the formation of porous deposits of metallic oxides. Within the porosities of these deposits, gas nuclei can be trapped and lead to the onset of nucleate boiling on these surfaces. The vapor formed through a wick boiling or capillary vaporization mechanism then escapes through the chimneys of the deposit. The chemistry of the coolant affects not only the thermodynamic properties of the fluid (such as saturation temperature and latent heat) but, more importantly, its interfacial properties (surface tension and solid/liquid/gas contact angles). These interfacial properties directly control the capillary forces within the deposits, and thus the onset and dynamics of subcooled boiling. As of today, the influence of coolant chemistry on the initiation and development of subcooled nucleate boiling within porous heated surfaces remains poorly understood.
The objective of this PhD is therefore to systematically study the coupled influence of coolant composition and capillary vaporization on nucleate boiling within porous substrates heated by conduction.
The research will follow an experimental approach to investigate how coolant chemistry affects surface tension and contact angles, in order to characterize fluid wetting on idealized porous substrates. Subcooled convective boiling experiments will also be conducted, with the phenomena characterized by shadowgraphy and fiber-optic thermometry.
The PhD will take place within the Thermal Hydraulics of Core and Circuits Laboratory (LTHC) and the Contamination Control, Coolant Chemistry and Tritium Management Laboratory (LMCT) at CEA IRESNE (Cadarache, France). The work will be supervised by Prof. Benoît Stutz of the University of Savoie Mont Blanc. Throughout this project, the doctoral student will develop expertise in interfacial physico-chemistry and two-phase thermohydraulics through the observation, characterization, and modeling of complex multiphysics phenomena.

Modeling and dynamic studies of a space Nuclear Electric Propulsion system

Nuclear technology is key to enabling the establishment of scientific bases on the Moon or Mars, or for exploring deep space. Its use can take several forms (RTG, NTP among others), but this thesis focuses on Nuclear Electric Propulsion (NEP): heat produced by a nuclear reactor is converted into electricity to power an ionic propulsion engine. Various concepts have been studied in the past (PROMETHEUS, MEGAHIT and DEMOCRITOS, typically for Jupiter satellite exploration missions), while currently design studies are underway at CEA for a 100 kWe nuclear-electric NEP system.
The system of interest combines several specific design choices: uranium nitride fuel, direct gas cooling (helium-xenon mixture) and energy conversion system based on a Brayton cycle, as well as waste heat evacuation through thermal radiation. These choices address requirements to minimize mass and volume, and to ensure performance and reliability for the duration of the scientific mission. Analysis of the dynamic behavior of the nuclear-electric system is therefore crucial for project success. However, the issue of transient modeling of a complete spatial nuclear-electric system is very poorly addressed in the state of the art, especially for NEP.
The thesis objectives are therefore to research and develop physical models adapted to a NEP system, to propose an approach for their validation, and finally to implement them to analyze the dynamic behavior of the reactor and contribute to improving its design. Several mission phases will be studied: reactor startup in space, power variation transients for the ionic propulsion engine, reactor response in case of failure, and its potential shutdown with the problem of safe residual power evacuation.
The thesis will be conducted at IRESNE Institute (CEA Cadarache), in a stimulating scientific environment, and integrated into a team designing innovative nuclear reactors. CNES will also be involved in monitoring the work, particularly to define the ionic propulsion engine characteristics and exploration missions of interest for the nuclear-electric system. The thesis topic, combining modeling, fluid mechanics, thermodynamics, neutronics, and space mechanics, will lend itself to scientific communication and allow the development of key skills for an academic or industrial career.

Multi-physics modelling of a light water nuclear reactor operating under natural convection: study of innovative solutions for startup and power control

Among the most recent designs of water-moderated Small Modular Reactors (SMR), several concepts are characterized by natural convection in the primary circuit during normal and abnormal operation, with the aim of increasing the inherent safety of the design. The absence of primary pumps in this type of SMRs significantly complicates the start-up and power increase ramps. This requires the development of specific start-up procedures to heat up the primary water circuit and enable the reactor to reach its nominal conditions, in accordance with safety requirements. These kinds of procedures rely on simulations using validated models to understand the reactor behavior during these phases and define the accessible parameters domain.
The goal of this PhD project is to develop a numerical model capable of simulating the startup of an SMR operating in natural convection, and to contribute to the validation of this model. The PhD study also aims at developing a methodology for reactor control systems optimization, to attain a fast startup while remaining within the prescribed safety criteria.
The analysis of the reactor startup procedure entails two disciplines: thermal-hydraulics and neutronics, which requires the development of multi-physics coupled simulation tools. Three scientific calculation tools in particular will be coupled in the framework of the PhD study: CATHARE3 (reactor system thermal-hydraulics), FLICA5 (core thermal-hydraulics) and APOLLO3 (neutronics).
The PhD student will work in a team of neutron physicists and thermohydraulic engineers at the IRESNE Institute (CEA Cadarache). He/she will develop skills in nuclear reactor physics and modeling.

Diphasic thermoregulation system for ultra wide bandgap diamond semiconductors

The objective of this thesis is to study a diphasic thermoregulation system for ultra wide bandgap diamond semiconductors. One of the specific behavior of diamond semiconductors is the negative temperature coefficient of is on-state resistance. The thermoregulation proposed in this thesis aims to optimize the global losses of the system and to insure both temperature and electrical constraints between several diamond semiconductors in parallel.
Based on specifications that will be defined at the beginning of this theses (calories to dissipate, temperature range to control), the PhD candidate will have to:
- Define a temperature control strategy
- Define most appropriate materials and fluid of this system
- Design the thermoregulation system
- Realize and validate experimentally the proposed system
This thesis will tackle numerical simulation (component and thermoregulation system modelling) and experimental tests through the realization of a TRL 3-4 prototype of power converter system integrating diamond Schottky diodes.
The global objective to achieve is to put forward an innovative system modeled and experimentally demonstrated, where control strategy, dimensional and operative elements will be investigated and optimized.

Characterisation of reaction pathways leading to thermal runaway for new battery technologies

The development of all-solid-state cells is no longer a mere hypothesis today. As part of the Safelimove project, we assessed the safety of hybrid polymer cells of 1 Ah and 3 Ah, which led to a publication. Additionally, within the Sublime project, we evaluated the safety of 1 Ah sulfide-based cells (argyrodite), and a publication is currently being submitted.

With the arrival of these new cells, it becomes even more crucial to support their development with a detailed safety assessment and the identification of the complex mechanisms involved. Large-scale instruments such as synchrotrons and neutron reactors offer a powerful opportunity to achieve this goal, as they provide the best spatial and temporal resolutions. For example, thanks to fast X-ray radiography at ESRF, it is possible to visualize the inside of a cell during thermal runaway, thereby identifying the local impact of (electro)chemical reactions on the microstructure of components and validating our thermal runaway models. Moreover, with wide-angle X-ray scattering (WAXS), it is possible to monitor in situ the evolution of the crystalline structure of active materials during a very rapid thermal runaway reaction. Indeed, synchrotron radiation allows the acquisition of one diffractogram every 3 milliseconds. The neutron beam at ILL also enables us to track the evolution of lithium metal structure before, during, and after runaway. It is important to emphasize that these three techniques are currently mastered by the LAPS teams and have already led, or will lead, to publications.

Furthermore, new complementary techniques may be explored, such as studying the impact of thermal/mechanical stress on active materials using the BM32 beamline, or evaluating the oxidation states of metals via X-ray absorption spectroscopy (XAS) on ID26.

More conventional laboratory characterizations will also be carried out, such as DSC, TGA-MS, and XRD.

As part of our various collaborations, for the all-solid-state system, the active material of the positive electrode will most likely be NMC, or even LMFP in the event of supply difficulties. The electrolyte used will be sulphide-based, or even halide-based, while the anode will be composed of lithium metal or even a lithium alloy. If time permits, a post-Na-ion system will be considered from the second year onwards. Among other things, the thesis will aim to identify, based on the materials used, whether there are reactions prior to cathode destabilisation, whether the solid electrolyte reacts with the oxygen in the cathode or with the anode material, and whether these parallel reactions contribute to better or worse cell safety.

The three years of the PhD will be structured as follows: the first year will be dedicated to a literature review and the characterization of sulfide technology. Following the first milestones (1st CSI) and the evaluation of ongoing work on sulfides, the second year will focus either on sodium-ion technology or on further development of sulfide technology. Finally, the third year, in addition to the thesis writing, will concentrate more specifically on the impact of the identified materials on safety.

Top