Characterisation of reaction pathways leading to thermal runaway for new battery technologies
The development of all-solid-state cells is no longer a mere hypothesis today. As part of the Safelimove project, we assessed the safety of hybrid polymer cells of 1 Ah and 3 Ah, which led to a publication. Additionally, within the Sublime project, we evaluated the safety of 1 Ah sulfide-based cells (argyrodite), and a publication is currently being submitted.
With the arrival of these new cells, it becomes even more crucial to support their development with a detailed safety assessment and the identification of the complex mechanisms involved. Large-scale instruments such as synchrotrons and neutron reactors offer a powerful opportunity to achieve this goal, as they provide the best spatial and temporal resolutions. For example, thanks to fast X-ray radiography at ESRF, it is possible to visualize the inside of a cell during thermal runaway, thereby identifying the local impact of (electro)chemical reactions on the microstructure of components and validating our thermal runaway models. Moreover, with wide-angle X-ray scattering (WAXS), it is possible to monitor in situ the evolution of the crystalline structure of active materials during a very rapid thermal runaway reaction. Indeed, synchrotron radiation allows the acquisition of one diffractogram every 3 milliseconds. The neutron beam at ILL also enables us to track the evolution of lithium metal structure before, during, and after runaway. It is important to emphasize that these three techniques are currently mastered by the LAPS teams and have already led, or will lead, to publications.
Furthermore, new complementary techniques may be explored, such as studying the impact of thermal/mechanical stress on active materials using the BM32 beamline, or evaluating the oxidation states of metals via X-ray absorption spectroscopy (XAS) on ID26.
More conventional laboratory characterizations will also be carried out, such as DSC, TGA-MS, and XRD.
As part of our various collaborations, the cathode active materials will likely include NMC, LMFP, and NVPF. The electrolytes used will be based on sulfide, halide, or polymer, while the anode will consist of lithium metal, lithium-silicon alloy, or hard carbon. The thesis will aim, among other things, to identify, depending on the materials used, whether reactions occur before cathode destabilization, whether the solid electrolyte reacts with the oxygen from the cathode or with the anode material, and whether these parallel reactions contribute to better or worse cell safety.
The three years of the PhD will be structured as follows: the first year will be dedicated to a literature review and the characterization of sulfide technology. Following the first milestones (1st CSI) and the evaluation of ongoing work on sulfides, the second year will focus either on sodium-ion technology or on further development of sulfide technology. Finally, the third year, in addition to the thesis writing, will concentrate more specifically on the impact of the identified materials on safety.
Mass transfers and hydrodynamic coupling: experimental investigation and models validation and calibration
In the context of the energy transition and the crucial role of nuclear power in a low-carbon energy mix, understanding and then mitigating the consequences of any accident leading to a reactor core meltdown, even a partial meltdown, is an imperative research direction.
During a core meltdown accident, a pool of molten material, known as corium, can form at the bottom of the reactor vessel. The composition of the pool can change over time. The corium bath is not homogeneous and can stratify into several immiscible phases. As the overall composition of the corium changes, so do the properties of the different phases. The vertical stratification order of the phases may change, leading to a vertical rearrangement of the phases. During this rearrangement, one phase passes through the other in the form of drops. The order of the phases and their movements are of prime importance, as they have a major influence on the heat flows transmitted to the tank. A better understanding of these phenomena will enable us to improve the safety and design of both current and future reactors.
Initial models have already been produced, but they lack validation and calibration. Prototype experiments are difficult to set up and none are planned in the short term. This thesis proposes to fill this gap by carrying out an experimental study of the phenomenon using a water-based simulating system that allows local instrumentation and large-scale test campaigns. The aim is to validate and calibrate the existing models, and even develop new ones, with a view to capitalising on these results in the PROCOR software platform, which is used to estimate the probability of a reactor vessel breach. The experimental set-up would be built and operated at the LEMTA laboratory at the University of Lorraine, where the PhD student would be seconded. In terms of experiments, two cases will be studied, the single drop case, and the stratified case with drop formation via Rayleigh-Taylor instabilities.
The work will be mainly experimental, with a component involving the use of code for calibration and validation, and may include a modelling component. It will be carried out entirely at the LEMTA laboratory in Nancy. The PhD student will benefit from LEMTA's expertise in the development of simulating experimental devices, fluid transfers and metrology. They will be part of a dynamic environment made up of researchers and other PhD students. The candidate should have knowledge of transfer phenomena (mass transfer in particular), as well as a definite interest in experimental science.
Understanding the signals emitted by moving liquids
Elasticity is one of the oldest physical properties of condensed matter. It is expressed by a constant of proportionality G between the applied stress (s) and the deformation (?): s = G.? (Hooke's law). The absence of resistance to shear deformation (G' = 0) indicates liquid-like behavior (Maxwell model). Long considered specific to solids, shear elasticity has recently been identified in liquids at the submillimeter scale [1].
The identification of liquid shear elasticity (non-zero G') is a promise of discoveries of new liquid properties. For example, do we know that a confined liquid changes temperature under flow? Yet no classical model (Poiseuille, Navier-Stokes, Maxwell) predicts the effect because without long-range correlation between molecules (i.e. without elasticity), the flow is dissipative, therefore athermal. For a change in temperature to be flow induced (without a heat source), the liquid must have elasticity and this elasticity must be stressed [1,2].
The PhD thesis will explore how the mechanical energy of the flow is converted in a thermal response [2]. We will exploit the capacity of conversion to develop a new generation of microfluidic devices (patent FR2206312).
We will also explore the impact of the wetting on the liquid flow, and reciprocally, we will examine how the liquid flow modifies the solid dynamics (THz) of the substrate [3]. Powerful methods only available in Very Large Research Facilities such as the ILL will be used to probe the non-equilibrium state of solid phonons. Finally, we will strengthen our existing collaborations with theoreticians.
The PhD topic is related to wetting, macroscopic thermal effects, phonon dynamics and liquid transport.
1. A. Zaccone, K. Trachenko, “Explaining the low-frequency shear elasticity of confined liquids" PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117
2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi : 10.1038/s41598-020-69404-1.
3. M. Warburton, J. Ablett, P. Baroni, JP Rueff, L. Paolasini, L. Noirez, “Identification by Inelastic X-Ray scattering of bulk alteration of solid dynamics due to Liquid Wetting”, J. of Molecular Liquids 391 (2023) 123342202
Multi-modal in situ nuclear magnetic resonance analysis of electrochemical phenomena in commercial battery prototypes
Advancing electrochemical energy storage technologies is impossible without a molecular-level understand-ing of processes as they occur in practical, commercial-type devices. Aspects of the battery design, such as the chemistry and thickness of electrodes, as well as configurations of current collectors and tabs, influence the electronic and ionic current density distributions and determine kinetic limitations of solid-state ion transport. These effects, in turn, modulate the overall battery performance and longevity. For these reasons, optimistic outcomes of conventional ‘coin’ cell tests often do not converge into high-performance commercial cells. Safety concerns associated with high energy density and flammable components of batteries are another subject paramount for conversion from fossil to green energy sources.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) are exceptionally sensitive to the structural environment and dynamics of most elements in active battery materials.
Recently, plug-and-play NMR and surface-scan MRI methods have been introduced. In the context of fun-damental electrochemical research, merging two innovative complementary concepts within one multi-modal (NMR-MRI) device would enable diverse analytical solutions and reliable battery performance metrics for academia and the energy sector.
In this project, an advanced analytical framework for in situ analysis of fundamental phenomena such as sol-id-state ion transport, intercalation and associated phase transitions, metal plating dynamics, electrolyte deg-radation and mechanical defects in commercial Li- and Na-ion batteries under various operational conditions will be developed. A range of multi-modal (NMR-MRI) sensors will be developed and employed for deep analysis of fundamental electrochemical processes in commercial battery cells and small battery packs.