Detailed Numerical investigations on highly-concentrated bubbly flows
To assess the safety of industrial facilities, the CEA develops, validates, and uses thermohydraulic simulation tools. Its research focuses on modelling two-phase flows using various approaches, from the most detailed to the largest system-scale. In order to better understand two-phase flows, Service of Thermal-hydraulic and Fluid Mechanics (STMF) is working on implementing a multi-scale approach in which high-fidelity simulations (DNS, Direct Numerical Simulation of two-phase flows) are used as “numerical experiments” to produce reference data. This data is then averaged to be compared with models used on a larger scale. This approach is applied to high-pressure flows where the bubbly flow regime is maintained even at very high void fractions. The Laboratory of Development at Local Scales (LDEL) belonging to STMF has developed a DNS method (Front-Tracking) implemented in its open-source thermo-hydraulics code: TRUST/TrioCFD [1] (object-oriented code, C++). In several PhDs, it has been used to perform massively parallel simulations to describe interfaces in detail without resorting to models, for example in groups of bubbles (called swarms) [2][3][4].
Currently applied to low-concentration two-phase bubbly flows (volume fraction less than 12%), the objective of this thesis will be to evaluate and use the method at higher void fractions. Reference HPC simulations of bubble swarms will be conducted on national supercomputers up to gas fractions of 40%. The quality of the results will be evaluated before extracting physical models of bubble interactions under these conditions. The objective of these models is to recover the overall dynamics of the bubble swarm at much lower resolutions, thereby enabling the study of larger systems in disequilibrium (external forcing of imposed turbulence generation, imposed average velocity gradient, etc.).
This work is funded by the French ANR, in collaboration with IMFT and LMFL, in parallel with two other theses with which there will be strong interactions. It will be performed at CEA-Saclay, in the STMF/LDEL laboratory. It includes numerical aspects (validation), computer developments (C++), and a physical analysis of the flows obtained.
Adjoint sensitivity method applied to industrial modeling of nuclear reactor cores
The objective of this thesis is to lay the foundations for applying the adjoint sensitivity method to industrial modeling of solid fuel nuclear reactor cores. The main topic will be the consideration of the coupling between neutronics, thermohydraulics, heat diffusion in fuel rods, and evolution.
Modeling of Wall Condensation Phenomena and Liquid Film Interactions
In this thesis, we focus on modeling mass and energy transfer associated with wall condensation in a turbulent flow of a vapor–noncondensable gas mixture. The flow is two-phase and turbulent, where forced, mixed, and natural convection modes may occur. The framework of this work relies on the RANS approach applied to the compressible Navier–Stokes equations, in which wall condensation is described using semi-analytical wall functions developed in a previous doctoral study cite{iziquel2023}. These functions account for the different convection modes as well as suction and species interdiffusion effects, but neglect the presence of a liquid film.
In the literature, the influence of film formation and flow on mass and heat transfer is often neglected, since it is generally assumed that, in the presence of noncondensable gases, the resistance of the gaseous layer to vapor diffusion is much greater than the thermal resistance of the liquid film.
The objective of this thesis is to improve the prediction of heat and mass transfer by investigating, beyond the thermal resistance of the condensate, the dynamic effect of the liquid and its interaction with the gaseous diffusion layer during wall condensation. The study will first consider laminar film flow, and then attempt to extend the analysis to the turbulent regime.
In the gas phase, the wall-function model developed in cite{iziquel2023} for a binary mixture of vapor and a single noncondensable gas will be extended to mixtures of vapor and $n>1$ noncondensable gases (N2, H2, …), in order to address hydrogen risk issues.
The validation of the implemented models will be carried out using results from separate-effect (SET) and coupled-effect (CET) experiments available in the literature (Huhtiniemi cite{huhti89}, COPAIN, ISP47-MISTRA, ISP47-TOSQAN, RIVA). Comparisons at the CFD scale, using wall functions for condensation neglecting the film, will be performed on benchmark cases from the literature and condensation experiments (COPAIN) to assess the impact of this assumption as well as the improvement provided by the new model in terms of accuracy and computational cost.
HPC two-phase simulations with lattice Boltzmann methods and adaptative mesh refinement
CEA/STMF develops computational fluid dynamics (CFD) codes in thermohydraulics that aim to quantify mass and energy transfers in nuclear cycle systems such as reactors and management devices of radioactive wastes. This thesis focuses on Lattice Boltzmann Methods (LBM) adapted to Adaptive Mesh Refinement (AMR) inside a generic computing environment based on Kokkos and executable on multi-GPU supercomputers. The proposed work consists in developing LB methods in the Kalypsso-lbm code to simulate coupled partial differential equations (PDEs) modelling incompressible two-phase and multi-component flows such as those encountered in downstream cycle devices. Once the developments have been completed, they will be validated with reference solutions. They will allow a comparison of various interpolation methods between blocks of different sizes in the AMR mesh. A discussion will be held on the refinement and de-refinement criteria that will be generalized for these new PDEs. Finally, benchamrks of performance will quantify the contribution of AMR for 3D simulations when the reference simulation is performed on a static and uniform mesh. This work will use supercomputers which are already operational (e.g., Topaze-A100 from CEA-CCRT), as well as the future exascale supercomputer Alice Recoque depending on the progress of its installation.
Modelling of Thermo-Fluid Phenomena in the Plasma Nozzle of the ELIPSE Process
The ELIPSE process (Elimination of Liquids by Plasma Under Water) is an innovative technology dedicated to the mineralization of organic effluents. It is based on the generation of a thermal plasma fully immersed in a water-filled reactor vessel, enabling extremely high temperatures and reactive conditions that promote the complete decomposition of organic compounds.
The proposed PhD research aims to develop a multiphysics numerical model describing the behavior of the process, particularly within the plasma nozzle, a key zone where the high-temperature gas jet from the torch interacts with the injected liquids.
The approach will rely on coupled thermo-aerodynamic modeling, integrating fluid dynamics, heat transfer, phase change phenomena, and turbulence effects. Using Computational Fluid Dynamics (CFD) tools, the study will characterize plasma–liquid interaction mechanisms and optimize the geometry and operating conditions of the process. This modeling will be compared and validated against complementary experimental data obtained from the ELIPSE setup, providing the necessary input for model calibration and validation.
This work will build upon previous research that has led to the development of thermal and hydraulic models of both the plasma torch and the reactor vessel. Integrating the new model within this framework will yield a comprehensive and coherent representation of the ELIPSE process. Such an approach represents a decisive step toward process optimization and industrial scale-up.
The ideal candidate will be a Master’s or final-year engineering student with a background in process engineering and/or numerical simulation, demonstrating a strong interest in physical modeling and computational approaches.
During this PhD, the candidate will develop and strengthen skills in multiphysics numerical modeling, advanced CFD simulation, and thermo-aerodynamic analysis of complex processes. They will also acquire solid experience in waste treatment, a rapidly expanding field with significant industrial and environmental relevance. These skills will provide strong career opportunities in applied research, process engineering, energy, and environmental sectors.
Simulation of flow in centrifugal extractors: the impact of viscous solvents on operation
Within the framework of nuclear spent fuel reprocessing, the CEA co-developed with ROUSSELET-ROBATEL liquid/liquid extraction (ELL) devices aimed at bringing two immiscible liquids into contact, one of which contains the valuable metals to be recovered and the other an extractant molecule. The multi-stage Centrifugal Extractor is one of the devices used to perform ELL at the La Hague plant. The future use of solvents potentially more viscous than current industrial standards may pose performance issues that need to be studied in advance in the laboratory to provide the necessary recommendations to restore the expected performance levels for the plant. The nuclear environment in which these devices operate makes in situ studies nearly impossible, thus depriving R&D of valuable information that is nevertheless essential for a deep understanding of the physicochemical mechanisms at the heart of the issues involved. To address this, the proposed study will rely on a numerical approach that will have been previously validated by comparison with either historical experimental data or data acquired from more recent ad hoc pilot systems. Thus, following a phase of literature review and capitalization of recent measurements, it is proposed to first create test cases that will be used to validate the numerical models. Based on this validation and in light of the knowledge acquired from previous theses concerning the effect of viscosity on flows, it is proposed to numerically explore the impact of an increase in solvent viscosity on centrifugal extractors. This will pave the way for a better understanding of the operation of the devices as well as operational or geometric improvements. The student will work at CEA Marcoule, in a research environment at the crossroads between a team of experimentalists and a team of numerical simulators. This experience will enable the student to acquire important skills in modeling liquid-liquid flows as well as solid knowledge on the development of liquid-liquid contactors.
Innovative techniques for evaluating critical steps and limiting factors for batteries formation
The battery manufacturing sector in Europe is currently experiencing strong growth. The electrical formation step that follows battery assembly and precedes delivery has received little academic attention, despite being crucial for battery performance (lifespan, internal resistance, defects, etc.). It is an essential time-consuming and costly step in the process (>30% of the cell manufacturing cost, and 25% of the equipment cost in a Gigafactory) that would greatly benefit from optimization.
In this thesis, we propose studying battery formation using innovative, complementary, operando non-intrusive techniques. The goal is to identify the limiting mechanisms of the electrolyte impregnation step (filling electrode pores) and of the initial charge. The candidate will implement experimental methods to monitor and analyze these mechanisms. He will also establish a methodology and protocols for studying these steps, combining electrochemical measurements with non-intrusive physical characterizations under operating conditions. The research will focus on optimizing formation time and quality control during this stage.
Modeling of a non-equilibrium dispersed phase and its fragmentation
In the context of the sustainable use of nuclear energy to produce carbon-free electricity, fourth-generation reactors, also known as "fast neutron" reactors, are necessary to close the fuel cycle.
This thesis falls within the framework of safety studies associated with such sodium-cooled reactors, and more particularly the hypothetical situation of a molten core relocating by gravity towards the core catcher at the bottom of the reactor vessel. A jet of corium (mixture of molten fuel and structural elements of the core) then interacts violently with the coolant, inducing, among other things, the fragmentation of the corium jet into droplets coupled with film boiling of the coolant. Characteristics of the resulting dispersed phase of corium and its fragmentation are crucial for studying the risk of runaway and steam explosion.
The aim of this thesis is to model a dispersed phase and its fragmentation in a surrounding fluid, using an approach that is both efficient and able to account to the scale variations and thermal imbalances between the droplets and the carrier phase. The method considered to meet these objectives is the method of moments, which derives from a kinetic model. It requires adequate closure and numerical schemes that satisfy non-standard constraints, while offering, in return, a crucial cost/accuracy compromise in the context studied. The advancements will be a priori implemented in the CFD software SCONE, built on the CEA's open-source TRUST platform.
The main work location will be based at the LMAG (Laboratory of Severe Accidents Modeling) at the IRESNE Institute of CEA Cadarache. Part of the work will also be carried out at the EM2C Laboratory (Molecular and Macroscopic Energetics, Combustion) – CNRS/CentraleSupélec in Paris.
The future PhD will work in a scientific dynamic environment and will acquire skills enabling to aspire to academic and industrial R&D positions.
Keywords : Dispersed Phase, Fragmentation, Kinetic, Method of Moments, Multiphase, Numerical methods, Severe Accidents.
Constrained geometric optimization of immersed boundaries for thermal-hydraulic simulations of turbulent flow in a finite-volume approach
The technical issue underpinning this thesis topic is the mitigation of the consequences of a loss of primary coolant accident in a pressurized water reactor with loops. It is of the utmost importance to minimize the flow of water leaving the vessel and to manage the available cold water reserves for safety injections as effectively as possible, in order to prevent or delay core flooding, overheating, and possible core degradation. To this end, the use of passive devices operating on the principle of hydraulic diodes, such as vessel flow limiters or advanced accumulators, is being considered. The subject of this thesis is the geometric optimization of this type of device, described by an immersed boundary, in order to maximize its service efficiency.
Several recent theses have shown how to introduce the Penalized Direct Forcing (PDF) immersed boundary method into the TRUST/TrioCFD software, under various spatial discretizations and for laminar and turbulent regimes. Similarly, they have ruled on the possibilities of deterministic geometric optimization in the finite-element context during simulations, based on the use of the PDF method.
After a bibliographic study of this kind of method, we will focus on the possibilities of implementation in finite volume discretization, the consideration of constraints, and the comparison to reference calculations. The latter will be carried out on academic and industrial configurations (accumulators and flow limiters).
The doctoral student will work in a R&D unit on innovative nuclear system within the IRESNE Institute (CEA Cadarache. He will develop skills in fluid mechanics and numerical methods.
Nucleate boiling within porous deposits: study of the coupling between coolant composition and capillary vaporization
In the search of the optimal combination of low-carbon energy sources to address the challenge of climate change, nuclear energy plays a crucial role alongside intermittent renewable energies. In this context, the performance and safety of Pressurized Water Reactors (PWRs), which make up the French nuclear fleet, remain an active and high-value research area.
In these reactors, a subcooled nucleate boiling regime can occur, particularly when the local temperature of the coolant exceeds its saturation temperature. This wall boiling promotes the formation of porous deposits of metallic oxides. Within the porosities of these deposits, gas nuclei can be trapped and lead to the onset of nucleate boiling on these surfaces. The vapor formed through a wick boiling or capillary vaporization mechanism then escapes through the chimneys of the deposit. The chemistry of the coolant affects not only the thermodynamic properties of the fluid (such as saturation temperature and latent heat) but, more importantly, its interfacial properties (surface tension and solid/liquid/gas contact angles). These interfacial properties directly control the capillary forces within the deposits, and thus the onset and dynamics of subcooled boiling. As of today, the influence of coolant chemistry on the initiation and development of subcooled nucleate boiling within porous heated surfaces remains poorly understood.
The objective of this PhD is therefore to systematically study the coupled influence of coolant composition and capillary vaporization on nucleate boiling within porous substrates heated by conduction.
The research will follow an experimental approach to investigate how coolant chemistry affects surface tension and contact angles, in order to characterize fluid wetting on idealized porous substrates. Subcooled convective boiling experiments will also be conducted, with the phenomena characterized by shadowgraphy and fiber-optic thermometry.
The PhD will take place within the Thermal Hydraulics of Core and Circuits Laboratory (LTHC) and the Contamination Control, Coolant Chemistry and Tritium Management Laboratory (LMCT) at CEA IRESNE (Cadarache, France). The work will be supervised by Prof. Benoît Stutz of the University of Savoie Mont Blanc. Throughout this project, the doctoral student will develop expertise in interfacial physico-chemistry and two-phase thermohydraulics through the observation, characterization, and modeling of complex multiphysics phenomena.