Effects of alpha decay on the alteration of nuclear glasses: simulation, understanding, and consideration in geochemical models

This Ph-D at the CEA on the alteration of nuclear glass is central to the challenges of sustainable radioactive waste management. The doctoral student will acquire expertise in materials and modeling, paving the way for exciting careers in research, engineering, or the nuclear industry. In deep geological storage, contact with groundwater can cause glass alteration, which is the main source of radionuclide release. The CEA is developing a multi-scale model that needs to be adapted to take into account the effects of glass self-irradiation. The aim of the thesis is to identify the mechanisms modified by irradiation and to parameterize the model. The doctoral student will conduct controlled irradiation experiments on non-radioactive glasses and compare them to ²44Cm-doped active glass. The structural and physicochemical changes induced will be characterized using various techniques (Raman, IR, NMR, SEM, TEM, DSC, etc.). Targeted alteration tests will be used to observe the impact of the level of damage on the kinetics of alteration. The results will be used to adjust and validate the predictive model under conditions representative of geological storage. The work will be carried out both in an active environment (shielded cells) and in an inactive laboratory. An M2 internship is available on the same subject. Profile: M2 or materials engineer, physical chemistry.

Impact of fission products and microstructure on the thermophysical properties of LWR (U,Pu)O2-x fuel

In France, mixed oxide fuel (MOX, (U,Pu)O2) is currently deployed in several pressurized water reactors (PWRs) operated by EDF. To ensure continued low-carbon electricity production, a broader use of MOX fuel across the French nuclear fleet is expected to become essential in the near future. During reactor operation, U1??Pu?O2?? fuels undergo significant changes in their physical properties and microstructure, primarily due to the accumulation of dozens of lighter elements generated by plutonium’s fission, commonly referred to as fission products (FPs). Because of the high radiotoxicity of irradiated fuel, surrogate materials known as SIMMOX have been developed. In a previous PhD project, we established a synthesis route enabling the production of SIMMOX doped with up to twelve fission products, successfully reproducing the microstructure of irradiated PWR MOX fuel.
To maintain an adequate margin to fuel melting during irradiation, it is crucial to understand how the thermophysical and thermodynamic properties of MOX fuel evolve under these conditions. This PhD project aims to measure these properties on a representative MOX composition currently used in EDF reactors. The key properties of interest include thermal conductivity, heat capacity, and melting temperature. These measurements will be carried out at the JRC-Karlsruhe (Germany) during a research stay of approximately 12 months. Subsequently, the samples will be returned to CEA-Marcoule, where the impact of high-temperature exposure on actinide and fission product speciation, as well as on the microstructural evolution of the MOX fuel, will be investigated. In parallel, the experimental work will be complemented by thermodynamic modeling using the CALPHAD approach, in order to identify the mechanisms and phase equilibria governing high-temperature behavior during property measurements.

Investigation of geopolymer durbility for radioactive wastewater treatment

The reprocessing of spent nuclear fuel generates radioactive effluents that require appropriate treatment. To meet industrial and regulatory challenges, the CEA is developing geopolymer-based adsorbent materials that are robust, cost-effective, and efficient for capturing Cs-137 and Sr-90. Their performance can be enhanced through the incorporation of selective adsorbents (such as zeolites) and through innovative shaping processes (3D printing, beads, foams) optimized for column adsorption.

The durability of these materials remains a critical issue, as their leaching and ageing mechanisms in column systems are still poorly understood. This PhD project will focus on studying these phenomena in order to assess the impact of effluent chemistry on the stability and efficiency of geopolymers. The work will include material synthesis, batch and column sorption tests, and the use of modelling tools to interpret alteration mechanisms. The scientific challenge is to identify the key physicochemical markers of geopolymer degradation in the targeted liquid effluents and to link them with column sorption performance.

The PhD candidate will join the Laboratory for Supercritical Processes and Decontamination (LPSD), renowned for its expertise in column-based ion extraction and adsorbent characterization. He/she will collaborate with specialists at CEA Marcoule and with the laboratory teams, and will regularly present project progress to the industrial partner. Upon completion of the PhD, the candidate will have developed recognized expertise at the interface of materials science, chemistry, and column adsorption processes. This work will open a wide range of opportunities: R&D positions in the nuclear sector, waste management, and functional materials; academic pathways (postdoctoral research, academia, teaching); or contributions to major energy and environmental challenges.

In situ and real-time characterization of nanomaterials by plasma spectroscopy

The objective of this Phd is to develop an experimental device to perform in situ and real time elemental analysis of nanoparticles during their synthesis (by laser pyrolysis or flame spray pyrolysis). Laser-Induced Breakdown Spectroscopy (LIBS) will be used to identify the different elements present and their stoichiometry.
Preliminary experiments conducted at LEDNA have shown the feasibility of such a project and in particular the acquisition of a LIBS spectrum of a single nanoparticle. Nevertheless, the experimental device must be developed and improved in order to obtain a better signal to noise ratio, to increase the detection limit, to take into account the different effects on the spectrum (effect of nanoparticle size, complex composition or structure), to automatically identify and quantify the elements present.
In parallel, other information can be sought (via other optical techniques) such as the density of nanoparticles, the size or shape distribution.

Study of the behaviour of mixed oxide fuels with degrade isotopy at the beginning of life.

France has decided to adopt a 'closed' nuclear fuel cycle. This involves processing spent fuel to recover valuable materials such as uranium and plutonium, while other compounds such as fission products and minor actinides constitute final waste. UO2 fuel irradiated in pressurised water reactors (PWRs) is currently reprocessed to produce plutonium (PuO2), which is then reused in the form of mixed oxide (MOX) fuel. This fuel is then irradiated in PWRs, a process known as plutonium monorecycling. The CEA is currently studying the multi-recycling of materials using fuels containing Pu from the processing of spent MOX assemblies. However, this multi-recycled plutonium contains a higher proportion of highly alpha-active isotopes (Pu238, Pu240 and Pu241/Am241), resulting in more severe alpha self-irradiation than current MOX fuels experience [1]. This exacerbates certain physical phenomena [2-5], such as fuel swelling due to helium precipitation and the creation of crystal defects and decreased thermal conductivity [6-8], which can alter its behaviour in the reactor.
The proposed thesis will study the impact of these phenomena on the behaviour of MOX fuels at the beginning of the irradiation, using a combination of experimentation and modelling. Heat treatments will be employed to analyse the mechanisms of crystal defect healing and helium behaviour. Various experimental techniques will be employed to characterise the structure and microstructure (X-ray diffraction, scanning electron microscopy (SEM), Raman spectroscopy and microprobe analysis), defect densities (transmission electron microscopy (TEM)), helium release (KEMS), thermal gradient reproduction (CLASH laser) and thermal conductivity (LAF laser). The results will inform simulations modelling the microstructure and thermal properties.
This cross-disciplinary study will improve our understanding of the phenomena involved in the initial power-up of fuels damaged by alpha self-irradiation, particularly the impact of helium produced by decay.

You will be based at the Multi-Fuel Design and Irradiation Laboratory (LECIM) within the Research Institute for Nuclear Systems for Low-Carbon Energy Production at CEA/Cadarache. For the experimental part of the project, you will collaborate with the Chemical Analysis and Materials Characterisation Laboratory (LMAT) at CEA/Marcoule and the European Research Centre (JRC) in Karlsruhe. You will have the opportunity to publish your results through scientific publications and conference presentations. This role offers the chance to develop your expertise in a variety of techniques that can be applied across multiple fields of materials science and engineering.

[1]O. Kahraman, thésis, 2023.[2]M. Kato et al., J Nucl Mater, 393 (2009) 134–140.[3]L. Cognini et al., Nuclear Engineering and Design 340 (2018) 240–244.[4] T. Wiss et al., Journal of Materials Research 30 (2015) 1544–1554.[5]D. Staicu et al., J Nucl Mater 397 (2010) 8–18.[6] T. Wiss et al.,Front. Nucl. Eng. 4 (2025) 1495360.[7]E.P. Wigner, J. Appl. Phys. 17 (1946) 857–863.[8]D. Staicu et al., Nuclear Materials and Energy 3–4 (2015) 6–11.

Design artificial intelligence tools for tracking Fission Product release out of nuclear fuel

The Laboratory for the Analysis of Radionuclide Migration (LAMIR), part of the Institute for Research on Nuclear Systems (IRESNE) at CEA Cadarache, has developed a set of advanced measurement methods to characterize the release of fission products from nuclear fuel during thermal transients. Among these innovative tools is an operando in situ imaging system that enables real-time observation of these phenomena. The large amount of data generated by these experiments requires dedicated digital processing techniques that account for both the specificities of nuclear instrumentation and the underlying physical mechanisms.

The goal of this PhD project is to develop an optimized data processing approach based on state-of-the-art Artificial Intelligence (AI) methods.
In the first phase, the focus will be on processing thermal sequence images to detect and analyze material movements, aiming to identify an optimal image-processing strategy defined by rigorous quantitative criteria.
In the second phase, the methodology will be extended to all experimental data collected during a thermal sequence. The long-term objective is to create a real-time diagnostic tool capable of supporting experiment monitoring and interpretation.

This PhD will be carried out within a collaborative framework between LAMIR, which has recognized expertise in nuclear fuel behavior analysis and imaging, and the Institut Fresnel in Marseille, known for its strong background in image analysis and artificial intelligence.
The candidate will benefit from a multidisciplinary and stimulating research environment, with opportunities to present and publish their work at national and international conferences and in peer-reviewed journals.

Development of manganese-doped uranium oxide fuel: sintering mechanisms and microstructural changes

This PhD project focuses on developing nuclear fuels with improved properties through the addition of a dopant, for use in pressurized water reactors.
In nuclear reactors, the fuel consists of uranium dioxide (UO2) pellets stacked inside zirconium alloy cladding. These pellets, in contact with the cladding, must withstand extreme conditions of temperature and pressure. One of the challenges is to limit chemical interactions that may occur during the migration of fission products from the center to the periphery of the pellet and with the cladding. A notable example of such a phenomenon is the stress corrosion assisted by iodine, which can occur during accidental transients.
One strategy is to dope the UO2 ceramic with a metal oxide in order to control the material’s microstructure and also to modify its thermochemical behavior, thereby limiting both the mobility and corrosive nature of fission gases. Among the possible dopants, manganese oxide (MnO) represents a promising option and a potential alternative to chromium oxide (Cr2O3), which is currently a mature solution for the industry.
This PhD will explore the role of manganese in the sintering of UO2, particularly the microstructure and final properties of the fuel. The work will take place at the CEA Cadarache center, within the Institute for research on nuclear systems for low-carbon energy production (IRESNE).
During these three years, you will be hosted in the Laboratory for the study of uranium-based fuels (LCU) within the fuel study department (DEC), in close connection with the Laboratory for fuel behavior modeling (LM2C).
This research, combining experimentation and modeling, will be structured around three main topics:
• Study of the influence of manufacturing conditions on the microstructure of Mn-doped UO2,
• Investigation of the impact of doping on defect formation in UO2 and the associated properties,
• the contribution to the thermodynamic modelling of the system, based on experimental tests.
During this PhD, you will gain solid experience in the fabrication and advanced characterization of innovative materials, particularly in the field of ceramics for the nuclear industry. Your work could lead to publications, patents, and participation in national and international conferences.
You will also acquire numerous technical skills applicable across various research and industrial fields, including energy, microelectronics, chemical and pharmaceutical industries.

Characterization of radiolytic mechanisms in tritiated water–zeolite systems under storage conditions

The operation of the tritium facilities at Valduc generates low-activity tritiated liquid effluents, which are stored in an adsorbed form on 4A zeolite for operational reasons. Understanding the mechanisms of self-radiolysis of this confined water is essential for optimizing storage conditions.
Several PhD projects have already investigated these mechanisms by combining experiments and modelling. Early work showed that below 13% hydration, the radiolytic gases H2 and O2 can recombine within the zeolite. Subsequent studies, based on DFT calculations and molecular dynamics, identified the adsorption sites and the mobility of the gases. They revealed a hydration threshold (13–15%) above which gas diffusion becomes very low, consistent with the experimentally observed cessation of recombination. However, these simulations rely on idealized models.
The new proposed PhD aims to shift the project back toward experimental work in order to better reflect real storage conditions. It will begin with a detailed characterization of the zeolite used industrially. Water–zeolite reservoirs will then be irradiated to simulate the effect of tritium, and analyzed by NMR and possibly by Electron Spin Resonance (ESR) to detect reactive species. The experimental results may feed into a macroscopic model (Kinetic Monte Carlo, KMC), also developed previously, to predict the evolution of the system and identify possible optimizations for storage. The work will be carried out mainly at the NIMBE laboratory (CEA-CNRS), with simulation collaboration in Besançon and regular exchanges with CEA Valduc.

Study of homogeneous SIMMOX synthesis and dissolution based on hydroxide pathway

The dissolution of spent nuclear fuel is an essential first step in its reprocessing. The kinetics of irradiated (U,Pu)O2 (MOX) dissolution currently hinders industrial-scale reprocessing and therefore requires a better understanding of the mechanisms involved in order to overcome this industrial obstacle. However, studying the dissolution of irradiated MOX fuel in order to identify and model the various stages and mechanisms involved is hampered by the high radiotoxicity of such material and the representativeness of the available samples. In order to simplify these studies and establish representative models, numerous tests have been carried out on model compounds (e.g., non-irradiated UO2 and MOX). Among these, SIMfuel (U,Pu)O2 compounds doped with up to 11 fission products aim to represent the chemical complexity of irradiated fuels. The conventional approach to manufacturing SIMfuel by mixing solid-phase reagents requires sintering of fuel pellets at high temperatures (>1600°C). In order to reproduce the behavior of fission products (reduction-oxidation, distribution, etc.) for irradiated fuels at lower temperatures, an alternative approach has been developed based on the synthesis of oxides via the hydroxide route. This method allows for the simultaneous and homogeneous precipitation of numerous metal cations and significantly lowers the sintering temperature. This approach has already enabled the study of SIMfuel incorporating rare earths, platinoids, and molybdenum under representative conditions. However, this approach has never been implemented for the synthesis of SIMfuel containing both plutonium and all fission products relevant to the study of dissolution.
The objective of this thesis is to implement such syntheses, based on recent results obtained concerning the synthesis of MOx by the hydroxide route. To this end, SIMfuels will be synthesized to represent spent MOx-type fuels (SIMMOx). To represent the different zones present in spent fuel, SIMMOx with different Pu/(U+Pu) ratios will be considered. These SIMMOx will undergo dissolution tests to characterize their behavior during this stage.

III-V semiconductor nanoplatelets

Colloidal semiconductor nanoplatelets (NPLs) are a class of two-dimensional nanostructures that have electronic and optical properties distinct from those of spherical quantum dots (QDs). They exhibit strong quantum confinement in a single dimension, their thickness, which can be controlled on the monolayer level using solution chemistry. As a result, NPLs emit light with an extremely narrow spectral width and at the same time, they have a very high absorption coefficients. These properties make them ideal candidates for various applications (e.g., light-emitting diodes for low-power-consumption displays, photocatalysis, single-photon emitters).
At present, only the synthesis of metal chalcogenide NPLs has been mastered. These materials either contain toxic elements (CdSe, HgTe, etc.) or have a large bandgap (ZnS, ZnSe). For these reasons, the development of synthesis methods for III-V semiconductor NPLs, such as InP, InAs and InSb is currently a major challenge. In this thesis, we will develop new synthetic approaches for the growth of InP NPLs, exploring different avenues and using in situ characterizations as well as machine learning assisted design of experiments. Numerical simulations will be used to determine the reactivity of precursors and to model the mechanisms inducing anisotropic growth.

Top