Study of the influence of the microstructure of a 316L steel produced by the L-PBF process on its mechanical properties: characterization and modeling of creep and fatigue behavior

Research into additive manufacturing for the nuclear industry shows that the production of 316L austenitic steel components using laser powder bed fusion (L-PBF) presents technical challenges, including process control, material properties, qualification and prediction of mechanical behaviour under service conditions. The final properties differ from traditional processes, often exhibiting anisotropy that challenges existing design standards.
These differences are linked to the unique microstructure resulting from the L-PBF process. Controlling the manufacturing chain, from consolidation to qualification, requires an understanding of the interactions between process parameters, microstructure and mechanical properties.
The aim of this thesis is to study the relationships between the microstructure, texture and mechanical properties of 316L steel manufactured by the L-PBF process, under static or cyclic loading. This includes the influence on creep and fatigue properties, and the development of a model to predict mechanical behaviour. Using samples of 316L steel with specific microstructures consolidated by L-PBF, the proposed study aims to establish links between microstructure and mechanical properties to better predict in-service behaviour.

Innovative syntheses of perovzalates and rationalization of the formation mechanism by synchrotron methods

“Perovzalates” are a new family of hybrid perovskites based on oxalate, with around ten examples listed since 2019 (AILi3MII(C2O4)3, with A = K+, Rb+, Cs+, NH4+; M = Fe2+, Co2+, Ni2+). Just like conventional perovskites, they are potentially interesting for countless applications (catalysis, optics, solar etc.), presenting additional advantages linked to the oxalate anion, which allows the incorporation of larger cations than in other hybrid pervovskites, while preserving a crystal structure similar to oxide perovskites.

However, this class of new materials is still barely explored, and the syntheses far from being mastered: the few reports to date systematically produce mixtures of phases, and relate to single crystals taken from heterogeneous solutions. In this context, the major problem is to synthesize an extended class of pure perovzalates.

This thesis addresses this challenge by exploiting a property discovered in the laboratory: the crystallization of metal oxalates by co-precipitation in water passes through transient “mineral emulsions”, that is to say nano-droplets rich in reagents which separate from water. The originality of this thesis is to exploit the nanostructuring provided by these mineral emulsions, and to test in particular using nanotomographic techniques accessible in synchrotron if they make it possible to confine the cations until crystallization.

Exploration of Diamond-Based Nanomaterials for (Sono)photocatalysis: Applications in Hydrogen Production and CO2 Reduction

Nanodiamonds (NDs) are increasingly being studied as semiconductors for photocatalysis, thanks in particular to the very specific positions of their valence and conduction bands, which can be modulated. For example, it has recently been shown that NDs can produce hydrogen under sunlight with an efficiency similar to that of TiO2 nanoparticles. Other studies also show the possibility of photogenerating solvated electrons from certain NDs for CO2 reduction or the degradation of stubborn pollutants.

With a view to accelerating the development of nanodiamond-based ‘solar-to-X’ technologies, we propose in this thesis to integrate nanodiamonds as photocatalysts in a sonophotocatalytic approach. Acoustic cavitation, generated by ultrasound, can improve mass transfer by dispersing catalytic particles and can produce additional reactive species (hydroxyl radicals, superoxides). It also emits sonoluminescence, which can promote the photogeneration of charges and should limit the recombination of charge carriers.

The first phase of the work will focus on the synthesis of nanodiamond-based photocatalysts, exploring various surface chemistries and their association with co-catalysts. Both classical and sonochemical synthesis methods will be used, as preliminary studies have shown that sonochemistry can effectively modify the surface chemistry of NDs. The photocatalytic properties of these materials will first be evaluated, leading to the design of a sonophotocatalytic cell. Further studies will explore the synergies between sonochemistry and photocatalysis for hydrogen production or CO2 reduction. This thesis will be carried out as part of a collaboration between the NIMBE at the Saclay CEA centre and the ICSM at the Marcoule CEA centre.

Design of plasmonic nanocomposite membranes for biomolecule detection

Detection of specific small biomolecules amounts is usually challenging. Recently, nanomaterials have provided new materials with interesting optical properties for such an application, especially plasmonic nanomaterials.

In this project, we propose the design of a specific type of nanocomposite made from the incorporation of plasmonic nanoparticles (NPs) within track-etched functionalized polymer membranes. The tuning of the material plasmonic response will be achieved by a controlled in situ NP synthesis directly within the membrane nanopores, through chemical and physico-chemical processes. Especially, the use of radiation (electron beam, ?-rays) to induce the in situ reduction of the metallic precursor will be studied. Ionizing beams (Swift Heavy ions) will also serve to structure the polymer matrix in nanoporous membrane with controlled nanoporosity. The relation between the composite nanostructure and its optical properties will be thoroughly investigated in order to determine the ideal material for biomolecule detection, which will be tested on model molecules such as proteins or virus-like particles (VLPs) in the final part of the project.

Influence of chromium doping of UO2 fuel on fission product speciation under accidental conditions

The development of nuclear reactors is part of a drive to improve safety, with, for example, the deployment of nuclear fuels with improved properties in terms of their behavior under accident conditions, the so-called E-ATF (Enhanced Accident Tolerant Fuel). Industrial operator FRAMATOME is developing the Cr2O3-doped UO2 fuel as E-ATF. However, very little data is available on the behavior of fission products from Cr-doped fuel under accident conditions.
This thesis proposes to develop a synthesis process for Cr-doped UO2 fuel that simulates irradiated fuel, in order to study the behavior of the elements (Cr and fission products) at different temperatures and under different oxygen partial pressures. The methodology is based on an experimental approach combining synthesis of model materials and in-depth chemical characterization, complemented by a theoretical approach (thermodynamic calculations) enabling thermal sequences to be dimensioned and the proposed reaction mechanisms to be confirmed.

The thesis will be carried out at CEA Cadarache (France), within IRESNE (Research Institute on Nuclear Systems for Low-Carbon Energy Production). The PhD student will be hosted in a laboratory dedicated to the study of uranium-based compounds in the Department of Fuel Studies (DEC). Depending on the densification processes chosen, experiments of various duration may be carried out in other laboratories in France or Europe.
The PhD student will have the opportunity to learn advanced characterization techniques for ceramic materials, gain access to experiments on large-scale instruments (synchrotron) and take part in exchanges with the academic community(CNRS, Universities, JRC). He or she will be able to promote his work through publications and participation in conferences.
At the end of this thesis, the PhD student will have acquired skills in materials science and solid state characterization that he/she will be able to use in various materials fields, as well as experience in the nuclear environment of interest to the nuclear industry.

The Pd-Rh-Ru-Te-O system in nuclear glasses and its impact on the glass melt conductivity

In France, high-level nuclear waste is vitrified. The components of the waste are integrated in a homogeneous vitreous matrix. However, platinum group metals (PGM) Pd, Rh and Ru are very poorly soluble in the glass melt and they form particles, combined or not with oxygen or tellurium.
Ru and Rh may reduce in their metallic state during glass processing. They are then more electrically conductive and their effect on the physical properties of the glass melt may affect the vitrification process control. Hence, the knowledge of the speciation and the morphology of the PGM elements is essential for the control of the process.
Thereby, this PhD will be split in 2 interdependent approaches: the first one by thermodynamic Calphad calculations and the other one by experimentations. First, the experimental approache will aim to understand and quantify the reduction of (Ru,Rh)O2 and the solubilisation of Ru and Rh in Pd-Te thanks to elaborations and characterizations (SEM and XRD mainly) of glasses with PGM particles. The results will complete a Calphad database. Calculations will help to discuss experimental results and will enable to predict the PGM state in the glass melt during the industrial vitrification. Secondly, electrical conductivity measurements at high temperature will be implemented on the glasses previously made to determine the impact of Ru and Rh speciation on the global conductivity of the melt.
The applicants must be rigorous, autonomous and have good communication and writing skills. Knowledge and experience in the field of glass or thermodynamics would be a plus.

Activated conductive materials for energy conversion and energy storage through capacitive effect

Energy production from renewable sources requires efficient storage systems to address imbalances between supply and demand. This project aims to develop cost-effective supercapacitors using composite electrodes derived from industrial by-products. Mineral binders, such as geopolymers or Alkali Activated Materials (AAM), made conductive by dispersing carbon black, are being studied for energy storage or heat generation applications. Based on a recently filed patent, we propose a detailed study of these conductive composites. Their performance will be evaluated depending on formulation and shaping parameters. Additionally, the porous network and the dispersion of conductive charges in the material will be thoroughly characterized. Finally, material shaping tests will be conducted, and supercapacitors will be assembled to study the impact of the process (3D printing) and geometries.

Electrolyte ceramics for oxygen potentiometric sensors in aggressive media of advanced nuclear reactor

The solid electrolytes are thought to play major role in future energetic systems (SOFC, SOEC). Among them, oxide ceramics with fluorite structure are particularly important. Correctly doped, their ionic conductivity is high and they are suitable for applications in aggressive media or at high temperatures. However, these properties are closely related to their microstructure, thus to their fabrication route. At CEA IRESNE, we develop fluorite based-potentiometric sensors for oxygen monitoring of advanced reactors coolants.
This thesis proposed to study the relation between the microstructure of two fluorite materials, doped hafnium or thorium oxides, and their behavior in liquid sodium or molten chlorides. The influence of grain size, density and impurity contents on the corrosion kinetic in sodium would provide insights on the corrosion mechanisms. The ultimate aim is to optimize the service life of these ceramics in oxygen sensors for sodium based energetics systems and to test them. The electrolyte will be used in sensors to characterize the behavior of oxygen in these complex media.
The student should be graduated in materials science. The thesis work will take place at the CEA/IRESNE Institute on the Cadarache site (France, Provence) in collaboration with the Institute of separative chemistry of Marcoule (France, Occitanie).

Stabilization of secondary phases in nanoreinforced ferritic steels: High-throughput screening approach of chemical compositions

Ferritic steels reinforced by oxide dispersion strengthening (ODS) are considered for use in 4th Generation and fusion nuclear reactors due to their excellent thermomechanical properties and stability under irradiation. However, these steels are weakened by secondary phases resulting from complex interactions between alloying elements and interstitials (C, N, O) introduced during their processing. Some alloying elements (such as Nb, V, Zr, Hf) could potentially stabilize these undesirable phases and mitigate their detrimental effects on the mechanical behavior of ODS steels. This thesis aims to develop a high-throughput screening method to identify optimal alloy compositions by combining rapid fabrication and characterization techniques. The PhD student will synthesize various compositions of ODS steels through powder metallurgy and carry out chemical, microstructural, and mechanical characterizations. This work will enhance the understanding of interstitial stabilization mechanisms and propose effective methodologies for characterizing new materials. The PhD student will gain in-depth knowledge in metallurgy and data processing, providing opportunities in industry, nuclear start-ups, and research.

Purification of chloride salts for safe use in energy production systems: development of methods, understanding and optimization.

Chloride molten salts are of major interest as coolants of high temperature energy production systems (solar, nuclear). However, they suffer from the high corrosion rates on structural materials, which is mainly related to their chemical purity. The control of oxygen activity is of prime interest to limit the dissolution of a large number of elements. However, some salts of interest for the nuclear industry (ternary NaCl-MgCl2-PuCl3 and its surrogate NaCl-MgCl2-CeCl3) are particularly difficult to purify, due to their high affinity with water.
Therefore, the understanding of the nature and stability of species formed in non-purified system (chlorides, oxides, oxi-chlorides, hydroxi-chlorides) is mandatory to propose appropriate purification methods for industrial systems. The Ph D will have to purify and characterize different salt mixtures (from binary to quaternary systems) from available methods in the laboratory:
• For purification: electrolysis, precipitation, filtration, chlorinating gas bubbling
• For characterization: electrochemical technics, potentiometric O sensors, Raman spectroscopy, analytical chemistry, materials characterization…
The thesis will take place at the institute of Energy (IRESNE) of the CEA Cadarache (Provence, France). The main laboratory (LMCT) has a large experience of advanced coolants chemistry (in particular sodium). Some collaborations are engaged with other labs of the CEA (Marcoule) and with the LGC Toulouse, both having long experience in molten salt chemistry.
The student should be graduated in electrochemistry or materials science.

Top