Spintronics-based non-volatile FPGA development for space applications

In microelectronics, we can distinguish between two types of integrated circuit. ASICs (Application Specific Integrated Circuits) dedicated to only one application and FPGAs (Field Programmable Gate Arrays) dedicated to digital electronics, on which we focus in this thesis. The main advantage of FPGAs is that they can be reprogrammed. These circuits are made up of several elementary logic cells, interconnected via a programmable interconnect system. This makes them particularly sensitive to radiation, since a fault in the memory permanently alters the operation of the FPGA. Traditional FPGAs are based on SRAM or Flash memories. The aim of this thesis is to evaluate the use of MRAM as a configuration and interconnect memory for FPGAs, and in particular as a means of improving/simplifying the implementation of standard hardening techniques for space applications, while reducing cost thanks to its density. The work will involve inserting multi-level magnetic components known as magnetic tunnel junctions, and assessing their value. To do this, we'll be using several simulation tools to inject particles present in space at different points in the circuit, and compare the results with a conventional version. In this way, it will be possible to measure the effectiveness of such a hardening process based on magnetic technology.