About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Advanced 3D-printed metallic bipolar plates for PEMFC application

Advanced 3D-printed metallic bipolar plates for PEMFC application

Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry


To meet the increasing energy demand and diversify energy resources, fuel cells emerge as a promising solution. This Ph.D work aims to contribute to the development of Proton Exchange Membrane Fuel Cells (PEMFCs), with a specific focus on bipolar plates (BPs) which ensure gas distribution and current collection. The first objectives are to design and manufacture stainless steel BPs using 3D printing (SLM - Selective Laser Melting) and to develop organic and inorganic anticorrosion coatings. Multiple channel architectures will be designed and characterized, including in-situ assessments with membrane-electrode assemblies (MEAs). Coatings will also be characterized, particularly in terms of their corrosion resistance through polarization methods. In the second phase, the aim is to integrate the optimized BPs with MEAs and thoroughly study the performance of PEMFCs using electrochemical techniques to gain fundamental insights into the mechanisms that limit PEMFCs performance.


Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Innovation, Chimie des Surfaces Et Nanosciences
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down