Among the vectors used to develop vaccines, virus-like particles (VLPs) are particularly interesting for the transfer of antigens (Ag). In fact, VLPs self-assemble into molecular motifs associated with pathogens, triggering vigorous immune responses, thus avoiding the need for adjuvants. As part of an ANR project in partnership with the Institut de Biologie Cellulaire Intégrative de Gif sur Yvette and the Institut Gustave Roussy de Villejuif, we are interested in the structural characterization of vaccines based on T5 bacteriophage pseudocapsids (T5-CLP).
During development, various quality indicators need to be reliably assessed to guide vaccine design, control production or verify safety and stability. Several attributes affecting the purity, efficacy and safety of T5-CLPs have been identified. Among these, the amount of Ag grafted is considered critical, as it determines vaccine efficacy. In this thesis, we propose to develop the potential of nanocharacterization technologies to rapidly and reliably validate the antigenic load of these vaccine particles. To do this, we will draw on conventional approaches such as proteomics and electron microscopy, and on a selection of advanced nanocharacterization technologies including nanoresonator mass spectrometry.