About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Conditional generative model for dose calculation in radiotherapy

Conditional generative model for dose calculation in radiotherapy

Engineering sciences Mathematics - Numerical analysis - Simulation Numerical simulation Technological challenges


Particle propagation through matter by Monte Carlo method (MC) is known for its accuracy but is sometimes limited in its applications due to its cost in computing resources and time. This limitation is all the more important for dose calculation in radiotherapy since a specific configuration for each patient must be simulated, which hinders its use in clinical routine.

The objective of this thesis is to allow an accelerated and thrifty dose calculation by training a conditional generative model to replace a set of phase space files (PSF), whose architecture will be determined according to the specificities of the problem (GAN, VAE, diffusion models, normalizing flows, etc.). In addition to the acceleration, the technique would produce an important gain in efficiency by reducing the number of particles to be simulated, both in the learning phase and in the generation of particles for the dose calculation (model's frugality).

We propose the following method:
- First, for the fixed parts of the linear accelerator, the use of a conditional generative model would replace the storage of the simulated particles in a PSF, whose data volume is particularly large. The compactness of the model would limit the exchanges between the computing units without the need for a specific storage infrastructure.
- In a second step, this approach will be extended to the final collimation whose complexity, due to the multiplicity of possible geometrical configurations, can be overcome using the model of the first step. A second conditional generative model will be trained to estimate the particle distribution for any configuration from a reduced number of simulated particles.

The last part of the thesis will consist in taking advantage of the gain in computational efficiency to tackle the inverse problem, i.e. optimising the treatment plan for a given patient from a contoured CT image of the patient and a dose prescription.


Département d’Instrumentation Numérique
Service Instrumentation et Métrologie des Rayonnements Ionisants
Laboratoire architecture Electronique, Modélisation et Analyse de données
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down