About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Contribution of artificial intelligence to the study of fission

Contribution of artificial intelligence to the study of fission

Corpuscular physics and outer space Nuclear physics

Abstract

Nuclear fission is an extreme process during which a heavy nucleus deforms until it reaches a point of no return leading to its separation into two fragments. The process goes with a significant release of energy, mainly as kinetic energy of the newly formed fragments, but also as excitation energy (about 15 MeV/fragment). In addition, the fragments are also produced with a high angular momentum. It is through the emission of neutrons and photons that fission fragments evacuate their energy and angular momentum. The ultimate experiment in fission would consist of identifying each fragment in mass and charge; measuring their kinetic energy; and characterize in energy and multiplicity the neutrons and photons they emit. This data set would make it possible to access the global energy of the fission process and to completely characterize the deexcitation of the fragments. Due to the significant complexity of such an exclusive measurement, this data set is always missing.

Our team is moving towards such measurement and this thesis work aims to explore the benefits that machine learning techniques can bring in this perspective.
The thesis will consist of taking advantage of all the experimentally accessible multi-correlated data in order to feed machine learning algorithms whose purpose will be to identify fission fragments and determine their properties.
The developed techniques will be applied to a first data set using a twin ionization chamber for the detection of fission fragments coupled to a set of neutron detectors. The data will be acquired at the beginning of the thesis.
In a second step, a more exploratory study will consist of applying the same techniques to data obtained during the thesis using a temporal projection chamber as a fission fragment detector. It will be a matter of demonstrating that the energy resolution is compatible with the study of fission.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique Nucléaire
Laboratoire etudes et applications des reactions nucleaires (LEARN)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down