About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Develoment of lithium mediated ammonia electrolyzer

Develoment of lithium mediated ammonia electrolyzer

Advanced hydrogen and fuel-cells solutions for energy transition Engineering sciences Materials and applications Technological challenges


Recent developments in electrochemical ammonia (NH3) synthesis using lithium (Li) metal deposition in THF-based electrolytes in the presence of protic species, reinvigorated the research interest in direct NH3 electrolyzes technology thanks to its surprisingly high performance in terms of synthesis rate and faradaic efficiency. However, the main drawback is poor energy efficiency due to minimum voltage requirements associated to Li metal deposition and H2 oxidation reactions on the opposite electrodes. In this project, we propose to study the nitridation reaction of Li-alloy forming metals that can enable the decrease in electolyzer voltage. This study will be performed using a 3-electrode electrochemical pressure cell and differential scanning calorimetry – thermogravimetric analysis under N2, H2 pressures. The goal here is to couple existing knowledge in chemical looping synthesis of ammonia with electrochemical synthesis. Porous (carbon or steel tissue) electrodes will be developed with nanoparticles of Li-alloy forming metals and their performance will be studied in an electrolyzer. The assumed 3-step reaction mechanism to form NH3 is as follows: Li deposition > nitridation > protonation. This mechanism is already a subject of discussion for pure Li metal which will be further complicated with the use of alloy forming metals. Therefore, we propose an in-depth study using x-ray photoemission spectroscopy. The ultimate objective of the project is to accelerate the direct NH3 electrolysis technology and address the Power-to-X needs of renewable electricity sources.


Département des Technologies des NanoMatériaux (LITEN)
Service des Technologies Durables pour le Cycle des matières (DRT)
Laboratoire des technologies de valorisation des procédés et des matériaux pour les EnR
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down