About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development and characterization of low temperature Cu-dielectric hybrid bonding

Development and characterization of low temperature Cu-dielectric hybrid bonding

Emerging materials and processes for nanotechnologies and microelectronics Engineering sciences Materials and applications Technological challenges

Abstract

Cu-dielectric hybrid bonding is a technology that enables the assembly of components with very fine interconnection pitch, opening the path to new integrations for advanced applications such as High Performance Computing, Smart Imagers,… Leti has been engaged for more than 10 years in the development of this technology, in partnership with various industries and academies, to master smaller and smaller connection pitches (< 1µm), or to evaluate new techniques such as ‘die-to-wafer’ self-assembly. In this context, low temperature hybrid bonding would allow new integration routes notably for heterogeneous systems (III-V on CMOS,…) or for thermally sensitive components (colored resins, non-volatile memories,…).

The objective of this thesis is to develop and characterize Cu-dielectric hybrid assemblies performed at low temperature, from ambient to 250°C. A first part of the thesis will aim at identifying the dielectric materials that are relevant for the hybrid bonding technology (SiN, SiON, SiCN, …). The critical properties of these materials (permittivity, hygroscopy,…) will be measured and compared to the reference high temperature SiO2. In a second part, the selected dielectrics will be integrated in the ‘wafer-to-wafer’ hybrid bonding technology and each process step (damascene level, surface preparation, direct bonding) will be adapted as needed. The third part of the thesis will be dedicated to the electrical characterization and reliability tests of the obtained low temperature hybrid bonding.

Laboratory

Département Composants Silicium (LETI)
Service des Composants pour le Calcul et la Connectivité
Laboratoire des Technologies d'Intégration 3D
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down