About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development of a new generation of recyclable encapsulation films for photovoltaic modules

Development of a new generation of recyclable encapsulation films for photovoltaic modules

Engineering sciences Materials and applications Solar energy for energy transition Technological challenges

Abstract

In the context of the energy transition, photovoltaic (PV) solar energy represents a growing share of the world's electricity production, and PV itself represents a growing share of the world's energy production. The massive production and deployment of PV modules is putting increasing pressure on the environment. In particular, because of the extraction of the raw materials required for their production and their disposal at the end-of-life. Recycling tackles both of these issues.
PV modules are made of layers of different natures laminated together. In the module central layers, PV cells are embedded in an elastomer, the encapsulant. This material plays several roles: barrier properties, mechanical protection, etc. Currently, the encapsulants used are generally cross-linked EVA copolymers, which makes recycling particularly difficult.
The aim of this thesis is to develop a vitrimer encapsulant for PV applications. Such an encapsulant, with exchangeable bonds, could drastically simplify recycling without compromising the integrity of the module in its lifetime. This work will start with the formulation of the encapsulant. It will go on with the characterization of its properties (thermo-reversibility, rheology and barrier properties), its extrusion into a film and its lamination in a PV module.
This development will be iterative, thus leading to tests under application representative conditions at various stages of development. It will rely on the resources and expertise of three laboratories LCMCP (Sorbonne Université), PIMM (ENSAM) et LITEN (CEA).

Laboratory

Département des Technologies Solaires (LITEN)
Service des Modules et Systèmes PV
Laboratoire des applications modules
HESAM Université
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down