About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development of integrated superconducting nanowire single photon detectors on silicon for photonic quantum computing

Development of integrated superconducting nanowire single photon detectors on silicon for photonic quantum computing

Electronics and microelectronics - Optoelectronics Engineering sciences New computing paradigms, circuits and technologies, incl. quantum Technological challenges

Abstract

The development of quantum technologies represents a major challenge for the future of our society, in particular to build unhackable communications as well as quantum computers offering computing power well beyond that available with current supercomputers. Photonic quantum bits (or qubits), in the form of single photons, are robust against quantum decoherence and are therefore very attractive for these applications. At CEA-LETI, we are developping an integrated quantum photonics technology on silicon wafers, compatible with industrialization, comprising key building blocks for qubit generation, manipulation and detection on-chip.
The PhD project will be focused on the development of integrated superconducting nanowire single photon detectors, sensitive to the presence of a single photon, required for photonic quantum computing. The objective will be the design of superconducting single photon detectors integrated with ultra-low loss waveguides used for the core of the quantum computing processor, the development of a clean room fabrication process compatible with the existing silicon photonics platform and the characterization of the detector figures of merit (detection efficiency, dark count rate, timing performances) using attenuated lasers. The final goal of the PhD will be the integration of small circuits including several detectors on-chip to characterize the purity and indistinguishability of single photons emitted by a quantum dot source developped in parallel at CEA-IRIG (also located in Grenoble).
This PhD work will be carried out in collaboration between CEA-LETI and CEA-IRIG and will be a strategic cornerstone at the heart of future generations of quantum photonic processors featuring several tens of qubits.

Laboratory

Département d’Optronique (LETI)
Service des Nouvelles Applications de la Photonique
Laboratoire d’Intégration Photonique sur Silicium
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down