



The future Electron-Ion Collider (EIC), to be constructed at Brookhaven National Laboratory (NY, USA) is a next-generation facility designed to explore the inner structure of protons and nuclei with unprecedented precision. It will explore how quarks and gluons generate the mass, spin, and structure of visible matter, and study the increase of gluon density at small Bjorken-x. To meet its ambitious physics goals, innovative detectors are being developed — including the Micromegas CyMBaL system, a gaseous tracker for the central region of the first EIC experimental apparatus ePIC.
This PhD project combines experimental detector R&D and physics simulations:
* Prototype characterization: build and test full-scale Micromegas detectors; measure efficiency, gain uniformity, and spatial resolution in laboratory and beam environments. Test and validate the prototypes with the new ASIC SALSA developed at CEA for gasesous detectors at ePIC.
* Detector simulations: integrate the CyMBaL geometry into the EIC framework and assess global tracking and performance requirements.
* Physics studies: simulate key processes sensitive to gluon saturation (e.g. final-state di-hadron correlations) to understand QCD at small-x and evaluate how detector performance influences physics sensitivity.
The PhD student will have opportunities to participate in the development of state-of-the-art gaseous detectors and to work within an international community of hadronic physicists on topics at the forefront of the field, with trips to Brookhaven National Laboratory (NY, USA) and opportunities for test-beam campaigns at accelerator facilities.

