About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Development of x-ray phase contrast and dark field imaging numerical model

Development of x-ray phase contrast and dark field imaging numerical model

Health and environment technologies, medical devices Numerical simulation Technological challenges


Since 2013, CEA List (Université Paris Saclay) has been developing phase contrast X-ray imaging methods, in particular using multi-lateral shearing interferometry. In addition to absorption information, the phase shift of X-rays provides additional contrast and sensitivity on the image, particularly for materials with low atomic numbers or low density.
Various techniques have been developed to generate a phase contrast, based in particular on the addition of a random or regular intensity modulator (sandpaper or grid). In addition, dark field imaging has emerged as a valuable complementary signal to phase contrast imaging. The dark field signal comes from the small-angle scattering of fine structures in the sample. In particular, the dark field signal has proven it sensibility to reveal features of the sample that remain invisible by conventional means. It can, for example, reveal the microstructural properties of the lung in cases of chronic obstructive pulmonary diseases.
The continuation of these developments requires the implementation of a numerical model producing sufficiently accurate images that are representative of an experimental system.
The aim of the thesis is to develop a numerical model that takes into account the phenomena of phase contrast and scattering, in particularby refraining from a classic modelling hypothesis, which is the consideration of an thin object (projected thickness hypotheseis). Failure to take this assumption into account will have to be dealt with in order to move towards phase imaging on a thick object (e.g. a thorax).
As a general rule, phase contrast is represented using models based on wave propagation. In contrast, scattering phenomena are usually simulated using a particle-based approach, often using Monte Carlo techniques. In this study, a combined approach will be developed with experimental validation.
The thesis will be carried out in CEA List with people who have solid numerical and experimental skills.


Département d’Instrumentation Numérique
Service Monitoring, Contrôle et Diagnostic
Laboratoire Instrumentation Multi TEChniques
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down