



The theoretical description from first principles, i.e. in a so-called ab initio manner, of atomic nuclei containing more than 12 nucleons has only recently become possible thanks to the crucial developments in many-body theory and the availability of increasingly powerful high-performance computers. These ab initio techniques are successfully applied to study the structure of nuclei, starting from the lightest isotopes and now reaching all medium-mass nuclei containing up to about 80 nucleons. The extension to even heavier systems requires decisive advances in terms of storage cost and computation time induced by available many-body methods. In this context, the objective of the thesis is to develop the dimensionality reduction method based on the factorization of tensors involved in the non-perturbative many-body theory known as deformed coupled cluster (dCC). The proposed work will exploit the latest advances in nuclear theory, including the use of nuclear potentials from chiral effective field theory and renormalization group techniques, as well as high-performance computing resources and codes.

