About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Dimensionality reduction method applied to the deformed coupled cluster ab initio many-body method

Dimensionality reduction method applied to the deformed coupled cluster ab initio many-body method

Corpuscular physics and outer space Nuclear physics Theoretical physics

Abstract

The theoretical description from first principles, i.e. in a so-called ab initio manner, of atomic nuclei containing more than 12 nucleons has only recently become possible thanks to the crucial developments in many-body theory and the availability of increasingly powerful high-performance computers. These ab initio techniques are successfully applied to study the structure of nuclei, starting from the lightest isotopes and now reaching all medium-mass nuclei containing up to about 80 nucleons. The extension to even heavier systems requires decisive advances in terms of storage cost and computation time induced by available many-body methods. In this context, the objective of the thesis is to develop the dimensionality reduction method based on the factorization of tensors involved in the non-perturbative many-body theory known as deformed coupled cluster (dCC). The proposed work will exploit the latest advances in nuclear theory, including the use of nuclear potentials from chiral effective field theory and renormalization group techniques, as well as high-performance computing resources and codes.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique Nucléaire
Laboratoire études du noyau atomique (LENA)
Paris Sud
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down