We propose to study the magicity of 68Ni by means of neutron adding and neutron removal transfer reactions (d,p) and (p,d), respectively. This way, we get unique access to the occupancy of the normally occupied orbits and the vacancy of the valence ones. If a sharp transition in occupancy is found, the nucleus is considered as magic, otherwise rather superfluid. Furthermore, this study also allows to study the spin-orbit force, essential to the modeling of atomic nuclei, in a unique manner. 68Ni is produced by means of the LISE spectrometer at GANIL, protons and deuterons produced arising from transfer reactions are detected in the highly-segmented Si array MUST2, gamma-rays with EXOGAM2 and incoming/outgoing nuclei tracks, energy losses and time-of-flights with sets of gas-filled detectors.