About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Generative artificial intelligence algorithms for understanding and countering online polarization

Generative artificial intelligence algorithms for understanding and countering online polarization

Artificial intelligence & Data intelligence Computer science and software Engineering sciences Technological challenges


Digital platforms enable the widespread dissemination of information, but their engagement-centric business models often promote the spread of ideologically homogeneous or controversial political content. These models can lead to the polarization of political opinions and impede the healthy functioning of democratic systems. The PhD will investigate innovative generative AI models devised for a deep understanding of political polarization and for countering its effects. It will mobilize several areas of AI: generative learning, frugal AI, continual learning, and multimedia learning. Advances will be associated with the following challenges:
-the modeling of political polarization, and the translation of the obtained domain model into actionable implementation requirements that will be used as inputs of AI algorithms;
-the curation of massive and diversified multimodal political data to ensure topical and temporal coverage, and to map these data to a common semantic representation space;
-the training of politics-oriented generative models to encode relevant knowledge effectively and efficiently and to generate labeled training data for downstream tasks;
-the specialization of the models for the specific tasks needed for a fine-grained understanding of polarization (topic detection, entity recognition, sentiment analysis);
-the continual update of the politics-oriented generative models and polarization-specific tasks to keep pace with the evolution of political events and news.


Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire Analyse Sémantique Textes et Images
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down