The core of the proposed thesis project will be the real-time search for transient high-energy emission linked to the detection of a gravitational waves and other multi-messenger astrophysical transients like high-energy neutrinos, gamma-ray bursts, fast radio bursts, stellar/nova explosions, etc. The combined observations across multiple instruments and cosmic messengers will unequivocally prove the existence of a high-energy particle accelerators related to these phenomena and will allow to derive novel insights into the most violent explosions in the universe.
Joining the H.E.S.S., CTA and SVOM collaborations the PhD candidate will be able to lead the exciting MWL and multi-messenger campaigns collected during the physics run O4 of the GW interferometers, the first high-energy neutrino events detected by KM3NeT and the first GRBs detected by the SVOM satellite. The PhD candidate will also have the opportunity to participate in the development of the Astro-COLIBRI platform allowing to follow transient phenomena in real-time via smartphone applications.