About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Hyperpolarised, continuous-mode NMR based on parahydrogen and grafted catalysts

Hyperpolarised, continuous-mode NMR based on parahydrogen and grafted catalysts

Chemistry Condensed matter physics, chemistry & nanosciences Engineering sciences Instrumentation

Abstract

Nuclear Nuclear magnetic resonance (NMR) is a robust, non-invasive technique of analysis. It provides valuable information about chemical reactions, which can then be better characterised and optimised. However, NMR is poorly sensitive, and low-concentrated solutes, such as intermediates of reaction, may be unobservable by conventional NMR. One method known to drastically but temporarily increase the sensitivity of NMR is to create a hyperpolarised state in the system of nuclear spins, i.e. a polarisation much greater than that accessible with available magnetic fields. One hyperpolarisation method uses the specific properties of parahydrogen. A catalyst is required to add parahydrogen to a multiple bond or a metal.

The present thesis will investigate the combined contribution of (i) parahydrogen-based hyperpolarisation [1], (ii) the grafting of the appropriate catalyst onto nanoparticles [2], and (iii) a continuous analysis method [3] to detect and identify chemical intermediates, areas in which the laboratory has acquired experience. This subject involves a major investment in instrumentation, as well as skills in synthetic chemistry and NMR.

The thesis will be carried out at NIMBE, a joint CEA/CNRS unit at CEA Saclay. The hyperpolarised NMR and the synthesis will take place under the respective responsibility of Gaspard HUBER, from LSDRM, and Stéphane CAMPIDELLI, from LICSEN. These two NIMBE laboratories are located in nearby buildings.

References:
[1] Barskiy et al, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 33, 114-115,.
[2] Hijazi et al., Org. Biomol. Chem., 2018, 16, 6767-6772.
[3] Carret et al., Anal. Chem. 2018, 90, 11169-11173.

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Structure et Dynamique par Résonance Magnétique (LCF)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down