Sodium-ion (Na-ion) batteries are attracting considerable interest as a credible alternative to the lithium-ion batteries widely used today. The abundance of sodium, together with the potential use of electrode materials without critical elements in their composition, has led to intensified research into Na-ion batteries. Hard carbon (HC) has been identified as the most suitable negative electrode for this technology. However, there is no consensus on the mechanisms for storing sodium in HC, because the many precursors and synthesis methods lead to singularly different HCs, which obviously do not function in the same way. A large database provides relationships between synthesis parameters (precursor, washing, pre-treatment, pyrolysis, grinding) and HC properties (porosity, structure, morphology, surface chemistry, defects), but it does not explain them. Consequently, the approach envisaged in this thesis is a multiphysics modeling of HC performance to understand the influence of precursor and synthesis method, exploiting the large existing characterization database.