About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Learning Fine-Grained Dexterous Manipulation through Vision and Kinesthetic Observations

Learning Fine-Grained Dexterous Manipulation through Vision and Kinesthetic Observations

Artificial intelligence & Data intelligence Automatics, Remote handling Engineering sciences Technological challenges

Abstract

Fine-grained dexterous manipulation presents significant challenges for robots due to the need for precise object handling, coordination of contact forces, and utilization of visual observations. This research aims to address these challenges by investigating the integration of vision and kinesthetic sensors, sim2real techniques, and generalization through embodiment. The objective is to develop end-to-end algorithms and models that enable robots to manipulate objects with exceptional precision and adaptability. The research will focus on learning from large-scale data, transferring knowledge from simulations to real-world scenarios, and efficiently generalizing through low-shot fine-tuning.

Laboratory

Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire Vision et Apprentissage pour l’analyse de scènes
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down