About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Multi-architecture Adaptive Mesh Refinement for multi-material compressible hydrodynamics simulation

Multi-architecture Adaptive Mesh Refinement for multi-material compressible hydrodynamics simulation

Computer science and software Engineering sciences Mathematics - Numerical analysis - Simulation

Abstract

CEA DAM is actively developing scientific software in computational fluid mechanics (CFD) for the numerical simulation of compressible and multi-material flows. Such numerical tools requires the use of parallel programming models designed for efficient use of large supercomputers. From the algorithmic point view, the fluid dynamics equations must be discretized and solved using the adaptive mesh refinement (AMR) strategy which allows to reduce the computational cost of such simulations, in particular the number of cells (therefore the memory footprint) and to concentrate the computational work load on the areas of interest (discontinuities, shocks, multi-fluid interfaces, etc. ).

Over the past fifteen years, with the appearance of graphics processors (GPUs), the hardware architectures used in the field of high-performance computing (HPC) have evolved profoundly. This PhD thesis is about designing a parallel implementation of the AMR techniques for the case of multi-material flows with the aim of using as efficiently as possible a GPU-based supercomputer. After required numerical verification and validation process, the developed code will be used to perform numerical simulation of a blast wave and its interaction with surrounding structures.

Laboratory

DSSI
DSSI
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down